Discovery and in Vivo Evaluation of Dual PI3K β / δ Inhibitors

Felix Gonzalez-Lopez de Turiso, ${ }^{*}{ }^{\dagger}$ Youngsook Shin, ${ }^{\dagger}$ Matthew Brown, ${ }^{\dagger}$ Mario Cardozo, ${ }^{\dagger}$ Yi Chen, ${ }^{\dagger}$ David Fong, ${ }^{\dagger}$ Xiaolin Hao, ${ }^{\dagger}$ Xiao He, ${ }^{\dagger}$ Kirk Henne, ${ }^{\S}$ Yi-Ling Hu, ${ }^{\dagger}$ Michael G. Johnson, ${ }^{\dagger}$ Todd Kohn, ${ }^{\dagger}$ Julia Lohman, ${ }^{\dagger}$ Helen J. McBride, ${ }^{\dagger}$ Lawrence R. McGee, ${ }^{\dagger}$ Julio C. Medina, ${ }^{\dagger}$ Daniela Metz, ${ }^{\dagger}$ Kent Miner, ${ }^{\dagger}$ Deanna Mohn, ${ }^{\dagger}$ Vatee Pattaropong, ${ }^{\dagger}$ Jennifer Seganish, ${ }^{\dagger}$ Jillian L. Simard, ${ }^{\dagger}$ Sharon Wannberg, ${ }^{\dagger}$ Douglas A. Whittington, ${ }^{\text {, }}$ Gang Yu, ${ }^{\ddagger}$ and Timothy D. Cushing ${ }^{\dagger}$
${ }^{\dagger}$ Department of Therapeutic Discovery and ${ }^{\S}$ Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
${ }^{\ddagger}$ Department of Inflammation Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
${ }^{\|}$Department of Therapeutic Discovery, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States

(5) Supporting Information

Abstract

Structure-based rational design led to the synthesis of a novel series of potent PI3K inhibitors. The optimized pyrrolopyridine analogue $\mathbf{6 3}$ was a potent and selective $\mathrm{PI} 3 \mathrm{~K} \beta / \delta$ dual inhibitor that displayed suitable physicochemical properties and pharmacokinetic profile for animal studies. Analogue 63 was found to be efficacious in animal models of inflammation including a keyhole limpet hemocyanin (KLH) study and a collagen-induced arthritis (CIA) disease model of rheumatoid arthritis. These studies highlight the potential therapeutic value of inhibiting both the $\mathrm{PI} 3 \mathrm{~K} \beta$ and δ isoforms in the treatment of a number of inflammatory diseases.

- INTRODUCTION

Class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that have emerged as attractive targets for the treatment of a number of diseases in both inflammation and oncology therapeutic areas. ${ }^{1}$ All class I PI3Ks have the ability to catalyze the in vivo conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3), which induces Akt phosphorylation and acts as a secondary messenger in the control of a wide number of cellular functions including metabolism, cell growth and motility. ${ }^{2}$ Class IA PI3Ks are composed of $\operatorname{PI} 3 \mathrm{~K} \alpha, \beta$ and δ, and these enzymes primarily respond to stimuli from receptor protein tyrosine kinases ${ }^{3}$ whereas the sole representative of class IB, PI3K γ, mainly responds to stimuli from GPCRs. ${ }^{4}$ In terms of tissue distribution, $\mathrm{PI} 3 \mathrm{~K} \alpha$ and β are ubiquitously expressed whereas $\mathrm{PI} 3 \mathrm{~K} \gamma$ and δ are mainly expressed in leukocytes. This expression pattern, in conjunction with mouse genetic studies, has established $\mathrm{PI} 3 \mathrm{~K} \alpha$ and β as promising targets for the treatment of human cancer ${ }^{5}$ and, the central role of $\mathrm{PI} 3 \mathrm{~K} \gamma$ and δ in leukocyte biology, suggested that inhibition of these two enzymes might also be a viable approach for the treatment of a variety of inflammatory diseases. ${ }^{6}$ These findings have prompted the development of small molecule inhibitors targeting different PI3K isoforms, ${ }^{1}$ and among these, the PI3K δ inhibitor CAL- 101^{7} has shown promise for the potential treatment of cancer patients suffering from chronic lymphocytic leukemia (CLL) ${ }^{8}$ or non-Hodgkin's lymphoma (NHL). ${ }^{9}$

To gain a better understanding of the in vivo pharmacology associated with inhibition of one or more of the PI3K isoforms,
we embarked on a program to identify novel PI3K inhibitors that could ultimately become useful therapeutics for the treatment of a variety of oncology and/or inflammatory human diseases. This effort has resulted in the identification of a number of both dual $\operatorname{PI} 3 \mathrm{~K} \alpha / \mathrm{mTOR}$ and selective PI3K δ inhibitors which are in different phases of clinical development. ${ }^{10,11}$ In this communication we report our progress toward the design and synthesis of inhibitors that target both the $\mathrm{PI} 3 \mathrm{~K} \beta$ and δ isoforms and describe our preclinical studies in animal models of inflammation. ${ }^{12,13}$

RESULTS AND DISCUSSION

As part of our research effort to identify novel PI3K inhibitors, lead compound 1 was designed by combining an indoline ring derived from our NF- κ-B-inducing kinase (NIK) program ${ }^{14}$ with a quinoline core. The latter was conceived as a structural modification of a cinnoline ring identified as part of our internal p38 inhibitor program. ${ }^{15}$ At the outset, it was hypothesized that compound 1 would be an ATP competitive inhibitor of PI3K with a binding mode in which the morpholine ring would interact with the hinge binder region of the enzyme, the geminal dimethyl group of the indoline would occupy the affinity pocket region and one of the methyl groups of the quinoline ring would partially reach into the ribose pocket (Figure 1). When compound 1 was synthesized and tested in an in vitro ATP loss assay, ${ }^{16}$

[^0]

Figure 1. (a) Proposed binding mode of compound 1 with PI3K δ. Dashed lines indicate hydrogen bond. Amino acid labels correspond to the PI3K γ isoform. (b) Profile of lead analogue 1.

Scheme 1^{a}

${ }^{a}$ Reagents and conditions: (i) bis(2-bromoethyl) ether, $150{ }^{\circ} \mathrm{C}, 67 \%$; (ii) $\mathrm{HCl}, 84-86 \%$; (iii) $\mathrm{NaNO}_{2}, \mathrm{KI}, 65 \%$; (iv) NaH , bis(2-bromoethyl) ether, 36%; (v) $\mathrm{Fe} / \mathrm{AcOH}, 72 \%$; (vi) Red-Al, 64\%; (vii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}, 86 \%$; (viii) $\mathrm{Pd}_{2} \mathrm{dba}_{3}$, morpholine, XPhos, 72%.
we observed that it was a potent PI3K β inhibitor $\left(\mathrm{IC}_{50}=60 \mathrm{nM}\right)$ but exhibited moderate PI3K δ potency $\left(\mathrm{IC}_{50}=362 \mathrm{nM}\right)$ and poor activity in an in vitro B-cell proliferation assay (anti-IgM/CD40L, $\left.\mathrm{IC}_{50}=745 \mathrm{nM}\right) .{ }^{17}$ This analogue also displayed poor physicochemical properties as illustrated by its poor microsomal stability and solubility. ${ }^{18}$ To elucidate the pharmacological implications of inhibiting both $\operatorname{PI} 3 \mathrm{~K} \beta$ and δ isoforms, a systematic medicinal chemistry effort to optimize compound $\mathbf{1}$ was initiated. The specific goal of the program was to identify a potent $\mathrm{PI} 3 \mathrm{~K} \beta / \delta$ dual inhibitor with suitable physicochemical properties (good microsomal stability, low potential for CYP inhibition, satisfactory PXR profile and good solubility) and pharmacokinetic (PK) profile for in vivo efficacy and tolerability studies. Notably, recent studies in chimeric mice prepared with bone marrow lacking both PI3K β and PI3K δ activity have suggested that combined pharmacological inhibition of $\mathrm{PI} 3 \mathrm{~K} \beta$ and δ might be a viable strategy for the
treatment of inflammatory diseases such as rheumatoid arthritis (RA). ${ }^{19}$ To test this hypothesis, our optimized PI3K β / δ dual inhibitors were evaluated in animal models of inflammation.

Chemistry. The general synthetic route that provided access to these analogues is described in Scheme 3 and involved the coupling of indolines $4,6,10$ or 13 (Scheme 1) with quinoline fragments 23a-f (Scheme 2). The synthesis of indoline 4 started with available 1-(6-amino-3,3-dimethylindolin-1-yl)ethanone $2,{ }^{20}$ which was transformed into the corresponding morpholino intermediate 3 by an alkylation reaction with bis(2-bromoethyl) ether. Subsequent deprotection with HCl afforded indoline 4. Iodoindoline 6 was synthesized starting from aminoindoline 2 , via a diazotizationiodination reaction sequence and subsequent deprotection of the acetyl group in 5 . The synthesis of indolines 10 and 13 started with nitro compound 7 , which was deprotonated with NaH in DMF and alkylated with bis(2-bromoethyl) ether to provide

Scheme 2^{a}

${ }^{a}$ Reagents and conditions: (i) PPA, $170{ }^{\circ} \mathrm{C}, 70 \%$; (ii) POCl_{3}, reflux, 83%; (iii) diethyl methylmalonate, $130{ }^{\circ} \mathrm{C}, 49 \%$; (iv) $\mathrm{NaOH}, 89 \%$; (v) PPA , $130{ }^{\circ} \mathrm{C}, 81 \%$; (vi) $\mathrm{POCl}_{3}, 100{ }^{\circ} \mathrm{C}$, 45%; (vii) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 2$-tributylstannylpyridine, 55%; (viii) $\left.\mathrm{Pd}^{(} \mathrm{PPh}_{3}\right)_{4}$, 3-tributylstannylpyridine, 55%; (ix) $\mathrm{POCl}_{3}, 90^{\circ} \mathrm{C}$.

Scheme 3^{a}

${ }^{a}$ Reagents and conditions: (i) NaH , dimethylformamide, $2-51 \%$; (ii) $\mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{BINAP}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, 29-62 \%$; (iii) H , $\mathrm{Pd} / \mathrm{C}, 31-38 \%$; (iv) CuI , $\mathrm{K}_{2} \mathrm{CO}_{3}$, L-proline, $13-23 \%$.
tetrahydropyran 8. Subsequent reduction of the nitro group with $\mathrm{Fe} / \mathrm{AcOH}$ provided indolinone 9, which was reduced with Red-Al to provide indoline fragment $\mathbf{1 0}$. The synthesis of $\mathbf{1 3}$ was achieved in a three step sequence involving protection of the indoline nitrogen in $\mathbf{1 0}$ with an acetyl group, Pd-mediated coupling of $\mathbf{1 1}$ with morpholine and final acid mediated deprotection of 12. Chloroquinolines 23a-f were synthesized following three different synthetic routes (Scheme 2). The first approach started with chloroaniline $\mathbf{1 4 a}$ which was reacted with ethyl 2-methyl-3oxobutanoate in hot PPA and subsequently chlorodehydrated with POCl_{3} to provide 23a. Quinolines 23b,c were synthesized by reaction of ketones 21a,b with anthranilic acid in hot POCl_{3}
(Scheme 2, bottom). Lastly the synthesis of quinolines 23d-f was carried out in a four step sequence involving reaction of 3-fluoroaniline ($\mathbf{1 4 b}$) with diethyl methyl malonate, basic ester hydrolysis of 17 , quinoline formation with PPA, chlorination with POCl_{3} and final Stille reaction of chloro intermediates 20a,b with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and 2(or 3)-tributylstannylpyridine.

Coupling of indoline 4 with chloroquinolines 23a,c was carried out following a Pd-catalyzed protocol to provide analogues 24a,c. Deprotonation of indoline 4 with NaH and subsequent $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ with chloroquinoline fragments 23b,d,e afforded analogues 24b,d,e (Scheme 3). The synthesis of $\mathbf{1}$ was achieved by hydrogenation of 24a with Pd / C. Analogues 26a,d were synthesized in a two step

Scheme 4^{a}

${ }^{a}$ Reagents and conditions: (i) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, 56 \%$; (ii) $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}, 13 \%$; (iii) Red- Al ; (iv) AcCl ; (v) Oxone, 24\% (from 29); (vi) $\mathrm{Pd}_{2} \mathrm{dba} 3$, XPhos^{2} morpholine, 59%; (vii) $\mathrm{HCl}, 65 \%$; (viii) 2,2-dimethoxypropane, 47\%; (ix) $\mathrm{Pd}_{2} \mathrm{dba}_{3}$, XPhos, morpholine, 35%; (x) Red-Al, 53%.

Scheme 5^{a}

34

37

39
40
${ }^{a}$ Reagents and conditions: (i) $\mathrm{Pd}_{2} \mathrm{dba}_{3}$, RuPhos, $26-57 \%$, 23d; (ii) $\mathrm{HCl}, 51 \%$.
sequence employing a base-mediated coupling of quinolines 23a,d with indoline 10 and final Cu -mediated coupling with morpholine. Hydrogenation of 26a under catalytic Pd / C conditions afforded analogue 26b. Analogue 26c was synthesized via the base mediated coupling described before between indoline 13 and chloroquinoline 23b.

A different set of analogues targeting the affinity pocket region of the PI3K enzyme were synthesized following the sequence described in Scheme 4. Diol 27^{21} was first reacted with mesyl chloride and then treated with sodium sulfide to afford 6-bromospiro[indoline-3,3'-thietan]-2-one (29). Subsequent Red-Al reduction of indolinone 29 provided indoline 30, which was protected with acetyl chloride to afford intermediate 31. Oxone oxidation of the cyclic sulfide in 31 provided sulfone intermediate 32. Coupling of the morpholine ring in 32 was carried out with $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ and XPhos, and final acid-catalyzed deprotection of the acetyl group provided indoline 34. Alternatively, diol 27 was protected with 2,2-dimethoxypropane, and a Pd-mediated coupling with XPhos and morpholine gave intermediate 36. Indolinone 36 was subsequently reduced with Red-Al to afford indoline 37.

With indolines 34 and 37 in hand, Pd-mediated coupling with chloroquinoline 23d provided analogue 38 and intermediate 39, respectively. Subsequent acid-mediated deprotection of the ketal group in 39 led to the desired diol analogue 40 (Scheme 5).

The synthesis of a different set of analogues in which the morpholine hinge binder was replaced by a number of heterocycles is described in Scheme 6. Indoline 6 was coupled with 4-pyridylboronic acid in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ to provide intermediate 41. Coupling of indoline 41 with quinoline 23d was carried out under Pd-catalyzed conditions to give analogue 44a. An acid mediated coupling of indoline 6 with chloroquinoline 23d provided iodo intermediate 42, which was converted to the pinacol boronic ester 43 by reaction with $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}$ and bis(pinacolato)diboron. This intermediate was transformed into analogues 44 b and 44 c via a Pd-catalyzed reaction with 4 -chloro2 -aminopyrimidine and 4-chloro-6-methylpyrimidin-2-amine, respectively.

An alternative series of compounds was synthesized by replacing the indoline in the previous analogues with a pyrrolopyridine ring. The synthesis of the new pyrrolopyridine fragments started with the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ of pyridine $\mathbf{4 5}$ with dimethyl malonate followed by

Scheme 6^{a}

${ }^{a}$ Reagents and conditions: (i) $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 4$-pyridylboronic acid, 32%; (ii) 6, 23d, $\mathrm{HCl}, 130{ }^{\circ} \mathrm{C}, 55 \%$; (iii) 41, 23d, $\mathrm{Pd}_{2} \mathrm{dba} 3, \mathrm{BINAP}, 8 \%$; (iv) $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}$, bis(pinacolato) diboron, 42%; (v) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, 4-chloro-2-aminopyrimidine, 26\%; (vi) 4-chloro-6-methylpyrimidin-2-amine, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, 42 \%$.

Scheme 7^{a}

${ }^{a}$ Reagents and conditions: (i) dimethyl malonate, $\mathrm{K}_{2} \mathrm{CO}_{3}, 97 \%$; (ii) $\mathrm{NaCl}, \mathrm{DMSO}, 150{ }^{\circ} \mathrm{C}, 75 \%$; (iii) NaH , iodomethane, 88%; (iv) $\mathrm{Fe}, \mathrm{AcOH}$, reflux, 83%; (v) Red-Al, 85%; (vi) diethyl malonate, $\mathrm{K}_{2} \mathrm{CO}_{3}$; (vii) Raney-Ni, 73% from 45; (viii) AcOH, 93%; (ix) NaH, bis(2-chloroethyl) ether, 14\%; (x) Red-Al, 71\%.

Scheme 8^{a}

${ }^{a}$ Reagents and conditions: (i) 23d, $\mathrm{HCl}, 150{ }^{\circ} \mathrm{C}, 45 \%$; (ii) morpholine, $\mathrm{Pd}_{2} \mathrm{dba}_{3}$, XPhos, 46%; (iii) (a) $\mathrm{Pd}^{\left(\mathrm{PCy}_{3}\right)_{2} \text {, bis(pinacolato) diboron, }}$ (b) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, 4-chloro-2-aminopyrimidine, 37% from 57.
a decarboxylation reaction to provide 47. This intermediate was alkylated using NaH and iodomethane to give 48, which was subsequently cyclized to the pyrrolopyridinone 49 in hot $\mathrm{Fe} / \mathrm{AcOH}$. Final Red-Al reduction provided the desired pyrrolopyridine 50. The synthesis of $\mathbf{5 6}$ proceeded through the nitro intermediate 52 , which was reduced to the corresponding aminopyridine 53 using Raney-Ni. Cyclization in hot toluene/ AcOH provided 54, which was subsequently alkylated with bis(2-chloroethyl) ether to give the desired tetrahydropyran 55. Reduction with Red-Al provided the pyrrolopyridine building block 56 (Scheme 7).

With pyrrolopyridine 50 in hand, acid mediated coupling with chloroquinoline 23d afforded intermediate 57 , which was
converted into analogues 58 and 59 using the previously described Pd-mediated conditions (Scheme 8).

The synthesis of pyrrolopyridine $\mathbf{6 1}$ was carried out by a Pd mediated coupling of the Boc-protected intermediate 60 with morpholine. Deprotection of the Boc group in $\mathbf{6 1}$ provided intermediate 62, which was coupled with 23d under Pd-catalyzed conditions to provide multigram quantities of 63 (Scheme 9).

Kinase and Cellular Inhibitory Activities. The initial SAR of analogues 24a-f and $\mathbf{2 6 b} \mathbf{- d}$ revealed that introduction of a phenyl group at the 2 -position of the quinoline ring significantly improved the potency of these analogues against the PI3K δ isoform (see analogues $\mathbf{1 / 2 4 b}$ and $\mathbf{2 6 b} / \mathbf{2 6 c}$, Table 1). The gain in potency of these analogues was consistent with the proposed

Scheme 9^{a}

${ }^{a}$ Reagents and conditions: (i) $\mathrm{Boc}_{2} \mathrm{O}, 88 \%$; (ii) $\mathrm{Pd}_{2} \mathrm{dba}_{3}$, XPhos, morpholine, 68%; (iii) TFA, 84%; (iv) 23d, XPhos-precatalyst, 41%.
Table 1. Profile of Analogues 1, 24a-f and 26b-d

${ }^{a}$ ATP loss assay. ${ }^{b}$ Anti-IgM/CD40L Human B Cell proliferation assay. ${ }^{c}$ At a $2 \mu \mathrm{M}$ compound concentration (compared to $10 \mu \mathrm{M}$ of rifampicin). IC_{50} values are reported as the mean from at least two independent experiments.
binding mode depicted in Figure 1 in which the phenyl ring would reach into the ribose pocket. Subsequent replacement of the phenyl group in $\mathbf{2 4 b}$ and $\mathbf{2 6 c}$ with a 2-pyridyl ring (analogues 24d, 26d) had the effect of improving both the solubility and PXR profile ${ }^{22}$ of these compounds. Comparison between the 7-F and 5-F quinoline substitution patterns (analogues 24d, 24e, Table 1) indicated that the 7-F substitution provided analogues with improved in vitro potency and microsomal stability. In contrast the $6-\mathrm{Cl}$ quinoline substitution pattern (analogue 24a) was detrimental to potency against the PI3K δ isoform. Based on this data the 2-pyridyl substituent and the 7-F quinoline substitution pattern were deemed optimal and were incorporated in subsequent analogues.

Analogues 38 and 40 that retained the optimized quinoline core and had different substitution at the 3 -position of the indoline ring were subsequently tested. The data collected from these analogues showed that polar substituents in the affinity pocket region were tolerated, but these compounds displayed lower potency against all PI3K isoforms (Table 2).

In contrast, replacement of the morpholine hinge binder in $\mathbf{2 4 d}$ with a number of different heterocycles (Table 3) led to the identification of the aminopyrimidine analogue $\mathbf{4 4 b}$, which
exhibited increased potency over the $\mathrm{PI} 3 \mathrm{~K} \gamma$ and δ isoforms relative to 24d.

Despite the improvements in potency the overall profile of these analogues was still not suitable for advanced in vivo animal studies since these compounds showed poor solubility, low microsomal stability and unfavorable CYP inhibition profiles (Table 1). It was hypothesized that decreasing the lipophilicity of these analogues might mitigate some of these liabilities. Thus, compounds in which the indoline ring in $\mathbf{2 4 d}$ was replaced with a pyrrolopyridine motif were synthesized. Notably when these analogues were tested in our in vitro assays, we observed that the pyrrolopyridine ring had the effect of improving both the overall physicochemical properties and biochemical potency of our inhibitors. ${ }^{23}$ In particular analogue 63 had improved microsomal stability, CYP inhibition and PXR profile relative to $\mathbf{2 4 d}$ as well as good cellular potency against both PI3K β^{24} and PI3K δ isoforms (Table 4).

Binding Mode and Protein Kinase Selectivity. In order to confirm the binding mode of our inhibitors, crystal structures of analogues 24 f and 63 in complex with PI3 $\mathrm{K} \gamma$ were obtained (Figure 1). ${ }^{25}$ As predicted, these structures showed that the morpholine ring interacts with the hinge binder region of $\mathrm{PI} 3 \mathrm{~K} \gamma$,

Table 2. Profile of Analogues 38, 40

${ }^{a} \mathrm{IC}_{50}$, ATP loss assay; ${ }^{b} K_{\mathrm{i}}$. IC_{50} values are reported as the mean from at least two independent experiments.

Table 3. Profile of Analogues 44a-c

${ }^{a} \mathrm{IC}_{50}$, ATP loss assay; ${ }^{b} K_{\mathrm{i}}$. IC_{50} values are reported as the mean from at least two independent experiments

Table 4. Profile of Analogues 58, 59 and 63

${ }^{a} \mathrm{IC}_{50}$, ATP loss assay. ${ }^{b} \mathrm{~K}_{\mathrm{i}}$. ${ }^{c}$ Anti-IgM/CD40L Human B Cell proliferation assay. ${ }^{d} \mathrm{PI} 3 \mathrm{~K} \beta$ counter screen assay in MDA-MB- 468 cells. ${ }^{e}$ At a $2 \mu \mathrm{M}$ concentration (compared to $10 \mu \mathrm{M}$ of rifampicin). IC_{50} values are reported as the mean from at least two independent experiments.
while the indoline, or pyrrolopyridine ring, occupies the affinity pocket and the quinoline ring sits in a hydrophobic pocket formed by movement of the Met804 side chain (Figure 2). The pyridine ring sits in the ribose pocket orthogonal to the quinoline ring. When bound to the protein, these molecules adopt a propellershape conformation in which the quinoline and indoline rings are
at an angle of approximately $90^{\circ} .{ }^{26}$ During the course of our studies toward the identification and development of selective PI3K δ inhibitors, we and others found that this propeller-shaped conformation was critical for gaining selectivity over protein kinases. ${ }^{27}$ Thus, we were pleased to discover that, when this analogue was tested in an Ambit kinase panel (440 kinases, $10 \mu \mathrm{M}$

Figure 2. Crystal structures of $\mathrm{PI} 3 \mathrm{~K} \gamma$ in complex with 24 f and 63 (PDB codes 4 FJY and 4 FJZ , respectively). Amino acid labels correspond to the $\mathrm{PI} 3 \mathrm{~K} \gamma$ isoform; blue labels indicate the corresponding residue in PI3K δ. Dashed lines indicate hydrogen bonds.

Table 5. Rat PK of Inhibitors 44b, 58 and 63

${ }^{a} 100 \%$ DMSO. ${ }^{b} 0.5 \%$ methyl cellulose, 1% Tween80, 98.5% water. ${ }^{c} 5 \%$ EtOH, 12.5% HPBCD, 20% PEG400, 25% PG, 37.5% water.

Figure 3. Inhibition of KLH-specific antibodies. Female Lewis rats were immunized with $60 \mu \mathrm{~g} / \mathrm{rat}$ of KLH intravenously. Treatment with vehicle or 63 at $1,3,10$, or $30 \mathrm{mg} / \mathrm{kg}$ qd for 10 days by oral gavage began 2 h before KLH immunization. Serum samples were collected on day 10 . KLH-specific IgG and IgM levels were measured by ELISA. Data are represented as mean of the dilution factor, and the error bars represent SEM of data from 8 rats.
concentration of 63), only two hits were detected at POC $<40 \%$ (ERBB3 and ANKK1, 30 and 34 POC respectively), ${ }^{28}$ revealing the excellent kinase selectivity profile of this compound. In addition analogue 63 also tested negative in a hERG binding assay. ${ }^{29}$

In Vivo PK. Rat PK studies were carried out with analogues 44b, 58 and 63 (Table 5). These compounds showed moderate to good PK profiles, and it was observed that replacement of the indoline ring in $\mathbf{4 4 b}$ with the pyrrolopyridine motif in analogues 58 and 63 had the effect of improving their overall PK profile. The pyrrolopyridine analogue 63 had lower clearance and higher
oral bioavailability than analogue 58. Based on these data, inhibitor 63 was selected for dose escalation studies, and it was found that this compound also displayed good pharmacokinetic properties at 3 and $10 \mathrm{mg} / \mathrm{kg}$ doses (Table 5).

In Vivo Pharmacology. Based on the favorable potency, selectivity, and PK profile of 63 , this analogue was selected for further in vivo evaluation in animal models of inflammation. Thus, the first experiment that was performed was a KLH study in rats. ${ }^{30}$ In this experiment, the animals were dosed orally once a day with vehicle or dual inhibitor 63 at $1,3,10$, and $30 \mathrm{mg} / \mathrm{kg}$ for a period of 10 days. ${ }^{31}$ Two hours after the first oral dose, the

Figure 4. (a) CIA study with analogue 63. Rats were administered with collagen by intradermal injection on day 1 and 6 . Treatment with vehicle or 63 at 1,3 , or $10 \mathrm{mg} / \mathrm{kg}$ qd by oral gavage began on day 1 and continued for 17 days (prophylactic dose). A second group of immunized animals was treated with 63 at $30 \mathrm{mg} / \mathrm{kg}$ qd by oral gavage on days 11 through 16 (therapeutic dose). Progression of inflammation was assessed by measurement of hind paw diameters. Data are represented as mean ankle diameter size, and the error bars represent SEM of data from 8 animals. (b) Histopathological analysis. Ethanol fixed hind paws were processed for histopathology scoring (see Supporting Information). Data are represented as mean cartilage score, and the error bars represent SEM of data from 8 animals.
animals were administered KLH. After 10 days serum samples were collected and the KLH specific antibodies were measured by ELISA (Figure 3). Gratifyingly we observed that the compound was well tolerated at all doses and all the animals treated with analogue 63 showed significant reduction of IgG and IgM specific antibodies (Figure 3).

In a second in vivo experiment we aimed to test the efficacy of 63 in the context of an animal model of rheumatoid arthritis (RA). Specifically, for this experiment we used a collagen-induced arthritis (CIA) model in Lewis rats ${ }^{32}$ in which the disease is induced via an injection of collagen (symptoms of arthritis, such as paw swelling, are typically observed 10 days after the collagen treatment). In this study the animals were administered with vehicle, or analogue 63 at 1,3 , and $10 \mathrm{mg} / \mathrm{kg}$ once a day for 17 days after the first collagen injection ${ }^{33}$ (prophylactic doses). A second group of animals was left untreated for 10 days after the collagen treatment, and on days 11 through 16 they were administered with analogue 63 orally once a day at $30 \mathrm{mg} / \mathrm{kg}$ ("onset", therapeutic dose). ${ }^{34}$ Progression of inflammation was assessed by measurement of hind paw diameters ${ }^{35}$ and after 17 days PK samples were taken in all the animals. As in the KLH experiment, all the animals survived to the end of the study without significant signs of toxicity. Remarkably, in this experiment we observed a robust dose dependent reduction of paw swelling in all the animals treated with analogue 63 at both prophylactic (1,3 , and $10 \mathrm{mg} / \mathrm{kg}$) and therapeutic doses ($30 \mathrm{mg} / \mathrm{kg}$, Figure 4). ${ }^{36}$ After necropsy, histopathological analysis showed that analogue 63 had also provided protection against cartilage erosion in a dose-dependent manner (Figure 4).

Analysis of the PK data in this study confirmed that analogue 63 in vivo exposures after a dose of 3,10 , and $30 \mathrm{mg} / \mathrm{kg}$ had provided coverage for over 24 h , of the IC_{50} of both $\mathrm{PI} 3 \mathrm{~K} \beta$ and δ cellular assays after correcting for plasma protein binding (Figure 5). ${ }^{37}$

Notably, the in vivo efficacy results from these experiments are consistent with studies in chimeric mice lacking PI3K β and PI3K δ activity recently reported in the literature using a serum transfer model of arthritis. ${ }^{19}$

CONCLUSION

On the basis of our understanding of the binding mode of our first generation PI3K δ inhibitors we designed a novel series of

Figure 5. PK data of analogue 63 in CIA study.
potent and selective dual $\operatorname{PI} 3 \mathrm{~K} \beta / \delta$ inhibitors by combining a quinoline pharmacophore with an indoline ring from our internal NIK program. Systematic SAR studies allowed us to identify a number of $\operatorname{PI} 3 \mathrm{~K} \beta / \delta$ dual inhibitors with improved potency and PK profiles. Among these, analogue 63 displayed satisfactory properties for advanced in vivo efficacy studies. These experiments showed that analogue 63 was well tolerated and efficacious in an animal model of RA, providing further evidence that pharmacological inhibition of the $\mathrm{PI} 3 \mathrm{~K} \beta$ and δ isoforms might be a valuable approach for the treatment of human inflammatory diseases such as RA.

EXPERIMENTAL SECTION

General Chemistry. All reactions were conducted under an inert gas atmosphere (nitrogen or argon) using a Teflon-coated magnetic stir bar at the temperature indicated. Commercial reagents and anhydrous solvents were used without further purification. Analytical thin layer chromatography (TLC) and flash chromatography were performed on Merck silica gel 60 (230-400 mesh). Removal of solvents was conducted by using a rotary evaporator, and residual solvent was removed from nonvolatile compounds using a vacuum manifold maintained at approximately 1 Torr. Microwave reactions were performed in a CEM Discover benchtop reactor. All yields reported are isolated yields.

Preparative reversed-phase HPLC was performed using an Agilent 1100 system and Phenomenex Gemini C18 column ($30 \mu \mathrm{~m}, 150 \mathrm{~mm} \times$ 30 mm i.d.), eluting with a binary solvent system A and B using a gradient elution [A, $\mathrm{H}_{2} \mathrm{O}$ with 0.1% trifluoroacetic acid (TFA); B, $\mathrm{CH}_{3} \mathrm{CN}$ with 0.1% TFA] with UV detection at 220 nm . All final compounds were purified to $\geq 95 \%$ purity as determined by an Agilent 1100 series HPLC with UV detection at 220 nm using the following method: Zorbax SB-C8 column ($3.5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ i.d.); mobile phase, $\mathrm{A}=\mathrm{H}_{2} \mathrm{O}$ with 0.1% TFA, $\mathrm{B}=\mathrm{CH}_{3} \mathrm{CN}$ with 0.1% TFA; gradient: $5-95 \% \mathrm{~B}$ ($0.0-$ 15.0 min); flow rate, $1.5 \mathrm{~mL} / \mathrm{min}$. Low-resolution mass spectral (MS) data were determined on an Agilent 1100 series LCMS with UV detection at 254 nm and a low resonance electrospray mode (ESI). ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Bruker Avance III $500(500 \mathrm{MHz})$ or Bruker Avance $400 \mathrm{II}(400 \mathrm{MHz})$ spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to residual undeuterated solvent as an internal reference. The following abbreviations were used to explain the multiplicities: $s=$ single; $d=$ doublet, $t=$ triplet, $q=$ quartet, $d d=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.

1-(3,3-Dimethyl-6-morpholinoindolin-1-yl)ethanone, 3. A mixture of 1-(6-amino-3,3-dimethylindolin-1-yl)ethanone, $2(10 \mathrm{~g}, 49 \mathrm{mmol})$, bis(2-bromoethyl) ether ($12.5 \mathrm{~mL}, 49 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(10.4 \mathrm{~g}, 97.9$ $\mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$ was heated to $150^{\circ} \mathrm{C}$ in a sealed tube. After 1 h , the mixture was cooled to room temperature and diluted with water $(200 \mathrm{~mL})$. The resulting solid was filtered, washed with water $(300 \mathrm{~mL})$, and dried in the air to give 1-(3,3-dimethyl-6-morpholinoindolin-1yl)ethanone, $3\left(9.07 \mathrm{~g}, 67 \%\right.$ yield) , as a gray solid. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO- d_{6}): $\delta \mathrm{ppm} 7.74(1 \mathrm{H}, \mathrm{s}), 7.06(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{dd}$, $J=8.2,2.1 \mathrm{~Hz}), 3.82(2 \mathrm{H}, \mathrm{s}), 3.67-3.76(4 \mathrm{H}, \mathrm{m}), 2.95-3.06(4 \mathrm{H}, \mathrm{m})$, $2.13(3 \mathrm{H}, \mathrm{s}), 1.26(6 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=275.0[\mathrm{M}+\mathrm{H}]^{+}$.

4-(3,3-Dimethylindolin-6-yl)morpholine, 4. 1-(3,3-Dimethyl-6-morpholinoindolin-1-yl)ethanone, $3(9.07 \mathrm{~g}, 33.1 \mathrm{mmol})$, was dissolved in acetonitrile $(100 \mathrm{~mL})$ and treated with $5 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$ at $95^{\circ} \mathrm{C}$. After 2 h , the mixture was cooled to room temperature. The reaction mixture was carefully neutralized with saturated NaHCO_{3} solution to pH 10 and extracted with ethyl acetate $(4 \times 100 \mathrm{~mL})$. The combined organics were washed with water, brine, dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane:ethyl acetate, $1: 0$ to $0: 1$) to give 4-(3,3-dimethylindolin-6-yl)morpholine, $4(6.42 \mathrm{~g}, 84 \%$ yield $)$, as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta \mathrm{ppm} 6.80(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.14$ $(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.2 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 5.28(1 \mathrm{H}, \mathrm{s}), 3.65-$ $3.73(4 \mathrm{H}, \mathrm{m}), 3.13(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 2.92-2.99(4 \mathrm{H}, \mathrm{m}), 1.17(6 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=233.2[\mathrm{M}+\mathrm{H}]^{+}$.

1-(6-lodo-3,3-dimethylindolin-1-yl)ethanone, 5. In a 500 mL threenecked round-bottom flask equipped with an overhead stirrer was combined 1-(6-amino-3,3-dimethylindolin-1-yl)ethanone, 2 (6.98 g , 34.22 mmol), with 30 mL of ice/water. The solution was cooled in an ice bath before concentrated $\mathrm{HCl}(6.8 \mathrm{~mL}, 81.60 \mathrm{mmol})$ was added. A solution of $\mathrm{NaNO}_{2}(2.48 \mathrm{~g}, 35.93 \mathrm{mmol})$ dissolved in 30 mL of water was added dropwise over a period of 10 min . After 30 min a solution of $\mathrm{KI}(11.36 \mathrm{~g}, 68.44 \mathrm{mmol})$ dissolved in $\mathrm{CHCl}_{3}(70 \mathrm{~mL})$ was added via an addition funnel over a period of 0.5 h . The resulting brownish solution was stirred at room temperature until gas evolution ceased. The reaction mixture was then transferred to a separation funnel, and the separated organic layer was washed with saturated NaHCO 3 , followed by $5 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica eluting with 20% hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The fractions containing the product were combined and concentrated under vacuum to give 1-(6-iodo-3,3-dimethylindolin-1-yl)ethanone, 5 (6.95 g , 65% yield), as a tan colored solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 8.39$ $(1 \mathrm{H}, \mathrm{s}), 7.37(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 3.85(2 \mathrm{H}, \mathrm{s})$, $2.16(3 \mathrm{H}, \mathrm{s}), 1.29(6 \mathrm{H}, \mathrm{s})$ Mass Spectrum (ESI): $m / e=316.0[\mathrm{M}+\mathrm{H}]^{+}$.

6-Iodo-3,3-dimethylindoline, 6. 1-(6-Iodo-3,3-dimethylindolin-1-yl)ethanone, $5(6.95 \mathrm{~g}, 22.08 \mathrm{mmol})$, was combined with methanol and concentrated $\mathrm{HCl}(25 \mathrm{~mL}, 300 \mathrm{mmol})$. The solution was heated at a gentle reflux for 1 h before it was cooled to room temperature. After cooling of the solution to $0{ }^{\circ} \mathrm{C}$, a white solid was filtered off to give 6-iodo-3,3-dimethylindoline hydrochloride (5.96 g). The product was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with NaHCO_{3} (saturated aqueous
solution), dried over MgSO_{4} and filtered and concentrated under vacuum to give 6-iodo-3,3-dimethylindoline ($5.2 \mathrm{~g}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 7.05(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{d}$, $J=1.7 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.30(2 \mathrm{H}, \mathrm{s}), 1.29$ $(6 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $m / e=274.0[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl 4-(4-Bromo-2-nitrophenyl)tetrahydro-2H-pyran-4-carboxylate, 8. Sodium hydride ($0.32 \mathrm{~g}, 8.03 \mathrm{mmol}, 60 \%$ dispersion in oil) was added in portions at room temperature to a stirred solution of methyl 2-(4-bromo-2-nitrophenyl)acetate, 7 ($1 \mathrm{~g}, 3.65 \mathrm{mmol}$), in DMSO $(15 \mathrm{~mL})$. After the mixture was stirred at room temperature for 30 min , sodium iodide ($0.055 \mathrm{~g}, 0.365 \mathrm{mmol}$) and bis(2-bromoethyl) ether $(1.27 \mathrm{~g}, 5.54 \mathrm{mmol})$ were added. The resultant mixture was stirred at $40^{\circ} \mathrm{C}$ for 19 h . After this time the mixture was poured into brine with ice $(50 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined extracts were washed with brine $(3 \times 80 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was purified by column chromatography on silica (hexane:ethyl acetate, 1:0 to $0: 1$) to give methyl 4-(4-bromo-2-nitrophenyl)tetrahydro-2H-pyran-4-carboxylate, 8 (0.45 g , $36 \%)$, as an orange syrup. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 7.89(1 \mathrm{H}$, $\mathrm{d}, J=2.2 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$, $3.87-3.94(2 \mathrm{H}, \mathrm{m}), 3.66-3.77(5 \mathrm{H}, \mathrm{m}), 2.33(2 \mathrm{H}, \mathrm{dd}, J=14.1,2.8 \mathrm{~Hz})$, $1.99-2.05(2 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $m / e=344.0[(\mathrm{M}+\mathrm{H})$ $\left.\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $346.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

6-Bromo-2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-3,4'-pyran]-2-one, 9. To a mixture of methyl 4-(4-bromo-2-nitrophenyl)tetrahydro-2H-pyran-4-carboxylate, $8(6.67 \mathrm{~g}, 19.4 \mathrm{mmol})$, in $\mathrm{AcOH}(97 \mathrm{~mL})$ was added Fe powder $(5.42 \mathrm{~g}, 96.97 \mathrm{mmol})$, and the mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h . After this time the reaction mixture was cooled to room temperature and filtered over Celite. The Celite was washed with acetic acid, and the combined filtrates were evaporated in vacuo. The resulting residue was purified by column chromatography (hexane:ethyl acetate, $1: 0$ to $0: 1$) to give 6 -bromo- $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-$3,4^{\prime}$-pyran]-2-one, 9 (3.93, 72% yield) , as an orange solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta \mathrm{ppm} 10.53(1 \mathrm{H}, \mathrm{s}), 7.47(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.14$ $(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.0 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 3.91-4.12(2 \mathrm{H}, \mathrm{m})$, 3.67-3.86 ($2 \mathrm{H}, \mathrm{m}$), 1.54-1.84 ($4 \mathrm{H}, \mathrm{m}$). Mass spectrum (ESI): $m / e=282.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $284.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

6-Bromo- $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-3,4'-pyran], 10. A heterogeneous mixture of 6-bromo- $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-3, 4^{\prime}-pyran]-2-one, $9(3.5 \mathrm{~g}, 12.4 \mathrm{mmol})$, in toluene $(25 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$. To the heated mixture was added a solution of Red-Al (65% in toluene, $11.6 \mathrm{~mL}, 37.2 \mathrm{mmol}$), and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 50 min . After this time the mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with a 2 N solution of aqueous $\mathrm{NaOH}(31 \mathrm{~mL}, 62 \mathrm{mmol})$. The mixture was extracted with ethyl acetate $(2 \times 100 \mathrm{~mL})$, and the combined extracts were washed with brine $(3 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The resulting residue was purified by column chromatography (0 to 100% gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:methanol: $\mathrm{NH}_{4} \mathrm{OH}$ (89:9:1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 6-bromo-2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-$3,4^{\prime}$-pyran], 10, as a yellow solid ($2.13 \mathrm{~g}, 64 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, DMSO- $\left.d_{6}\right): \delta \mathrm{ppm} 6.91-6.99(1 \mathrm{H}, \mathrm{m}), 6.66(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}), 6.59$ $(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{s}), 3.70-3.87(2 \mathrm{H}, \mathrm{m}), 3.36-3.51(4 \mathrm{H}, \mathrm{m})$, $1.65-1.84(2 \mathrm{H}, \mathrm{m}), 1.39-1.57(2 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $m / e 268.0$ $\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $270.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

1-(6-Bromo-2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-3,4'-pyran]-1-yl)ethanone, 11.6 -Bromo- $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-3, 4^{\prime}-pyran], $10(3.07 \mathrm{~g}, 11 \mathrm{mmol})$, was dissolved in pyridine $(10.0 \mathrm{~mL}, 124 \mathrm{mmol})$, and acetic anhydride $(1.6 \mathrm{~mL}, 17 \mathrm{mmol})$ was added followed by DMAP $(0.0576 \mathrm{~g}, 0.472 \mathrm{mmol})$. The reaction mixture was heated to $85^{\circ} \mathrm{C}$ for 30 min . After this time the reaction mixture was cooled to room temperature. The resulting precipitate was collected by filtration, to give 1-(6-bromo$2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-3, 4^{\prime}-pyran]-1-yl) ethanone, 11 ($3.07 \mathrm{~g}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 8.17-$ $8.26(1 \mathrm{H}, \mathrm{m}), 7.26(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.17-7.23(1 \mathrm{H}, \mathrm{m}), 4.10(2 \mathrm{H}$, s), $3.79-3.91(2 \mathrm{H}, \mathrm{m}), 3.44-3.59(2 \mathrm{H}, \mathrm{m}), 2.22(3 \mathrm{H}, \mathrm{s}), 1.79-1.92(2$ $\mathrm{H}, \mathrm{m}), 1.47-1.61(2 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): m/e $310.0[(\mathrm{M}+\mathrm{H})$ $\left.\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $312.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

1-(6-Morpholino-2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-3,4'-pyran]-1-yl)ethanone, 12. 1-(6-Bromo-2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-$3,4^{\prime}$-pyran]-1-yl)ethanone, $11(2.56 \mathrm{~g}, 8.25 \mathrm{mmol})$, was combined with
morpholine ($1.08 \mathrm{~mL}, 12.4 \mathrm{mmol}$), dicyclohexyl $\left(2^{\prime}, 4^{\prime}, 6^{\prime}\right.$-triisopropylbi-phenyl-4-yl)phosphine ($0.118 \mathrm{~g}, 0.248 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}(0.256 \mathrm{~g}$, $0.248 \mathrm{mmol})$, and cesium carbonate ($4.03 \mathrm{~g}, 12.4 \mathrm{mmol}$) in tert-butanol $(30.0 \mathrm{~mL}, 314 \mathrm{mmol})$. The reaction mixture was purged with N_{2}, and it was heated at $110^{\circ} \mathrm{C}$ for 4 h . After this time the reaction mixture was diluted with ethyl acetate and filtered through a Celite pad. The filtrate was concentrated in vacuo. The crude material was triturated with ethyl acetate/hexane to give 1-(6-morpholino- $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro-[indoline-3,4'-pyran]-1-yl)ethanone, 12 ($1.88 \mathrm{~g}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta \mathrm{ppm} 7.77(1 \mathrm{H}, \mathrm{dd}, J=2.0,0.4 \mathrm{~Hz}), 7.11(1 \mathrm{H}$, $\mathrm{d}, J=8.2 \mathrm{~Hz}), 6.53-6.66(1 \mathrm{H}, \mathrm{m}), 3.98-4.08(2 \mathrm{H}, \mathrm{m}), 3.78-3.89(2 \mathrm{H}, \mathrm{m})$, 3.66-3.75 (4 H, m), 3.44-3.55 ($2 \mathrm{H}, \mathrm{m}$), 2.95-3.10 (4 H, m), 2.15$2.25(3 \mathrm{H}, \mathrm{m}), 1.75-1.89(2 \mathrm{H}, \mathrm{m}), 1.37-1.57(2 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $m / e=317.0[\mathrm{M}+\mathrm{H}]^{+}$.

6-Morpholino-2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-3,4'-pyran], 13. A mixture of 1-(6-morpholino- $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-$3,4^{\prime}$-pyran]-1-yl)ethanone, 12 ($1.35 \mathrm{~g}, 4.27 \mathrm{mmol}$), in acetonitrile $(30 \mathrm{~mL})$ was treated with 2.0 M aqueous $\mathrm{HCl}(12 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight, and then it was heated to $120^{\circ} \mathrm{C}$ for 36 h . After this time the reaction mixture was cooled to room temperature and quenched with aqueous NaOH . The mixture was partitioned between ethyl acetate $(200 \mathrm{~mL})$ and water $(80 \mathrm{~mL})$. The separated organic layer was washed with NaHCO_{3} (saturated aqueous solution), and then it was dried over MgSO_{4}, filtered and evaporated in vacuo to give 6-morpholino- $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro-[indoline-3, 4^{\prime}-pyran], 13 ($1.06 \mathrm{~g}, 90 \%$ yield), as a pale solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 7.00(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.33(1 \mathrm{H}, \mathrm{dd}, J=8.2$, $2.3 \mathrm{~Hz}), 6.27(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 3.93-4.01(2 \mathrm{H}, \mathrm{m}), 3.80-3.89(4 \mathrm{H}$, m), 3.70-3.77 ($1 \mathrm{H}, \mathrm{m}$), 3.49-3.63 ($4 \mathrm{H}, \mathrm{m}$), $3.07-3.14(4 \mathrm{H}, \mathrm{m}), 1.87-$ $2.03(2 \mathrm{H}, \mathrm{m}), 1.57-1.72(2 \mathrm{H}, \mathrm{m})$. Mass spectrum $(\mathrm{ESI}): m / e=275.0$ $[\mathrm{M}+\mathrm{H}]^{+}$.

6-Chloro-2,3-dimethylquinolin-4-ol, 16. A stirred mixture of 4-chloroaniline, $14 \mathrm{a}(2 \mathrm{~g}, 15.68 \mathrm{mmol})$, and ethyl 2-methyl-3oxobutanoate, $15(4.53 \mathrm{~mL}, 31.36 \mathrm{~mol})$, in PPA $(6.3 \mathrm{~g})$ was heated at $170^{\circ} \mathrm{C}$ for 2 h . After this time the mixture was cooled to room temperature and neutralized to pH 8 with 2 N aqueous NaOH . The resulting precipitate was collected by filtration, washed with water, and dried to give 6-chloro-2,3-dimethylquinolin-4-ol, $16(2.3 \mathrm{~g}, 70 \%$ yield $)$, as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta \mathrm{ppm} 11.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.98$ $(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 7.56-7.63(1 \mathrm{H}, \mathrm{m}), 7.48-7.55(1 \mathrm{H}, \mathrm{m}), 2.37(3 \mathrm{H}, \mathrm{s})$, $1.97(3 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=208.0[\mathrm{M}+\mathrm{H}]^{+}$.

4,6-Dichloro-2,3-dimethylquinoline, 23a. A mixture of 6-chloro-2,3-dimethylquinolin-4-ol, $16(1 \mathrm{~g}, 4.82 \mathrm{mmol})$, and $\mathrm{POCl}_{3}(5 \mathrm{~mL}, 48.2$ mmol) was heated at reflux for 3 h . After this time the reaction mixture was concentrated under reduced pressure. The resulting residue was carefully treated with ice water, and the aqueous mixture was basified with $\mathrm{NH}_{4} \mathrm{OH}$. The resulting precipitate was collected by filtration, washed with water, and dried to give to give 4,6-dichloro-2,3-dimethylquinoline, 23a $\left(0.9 \mathrm{~g}, 83 \%\right.$ yield), as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ ppm $8.08(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{dd}, J=$ $9.0,2.2 \mathrm{~Hz}), 2.68(3 \mathrm{H}, \mathrm{s}), 2.52(3 \mathrm{H}, \mathrm{s})$. Mass spectrum $(\mathrm{ESI}): m / e=$ $226.0[\mathrm{M}+\mathrm{H}]^{+}$.

Ethyl 3-(3-fluorophenylamino)-2-methyl-3-oxopropanoate, 17. A mixture of 3-fluoroaniline, $\mathbf{1 4 b}(18 \mathrm{~mL}, 187 \mathrm{mmol})$, in pyridine (31 mL , 374 mmol) and diethyl methylmalonate $(48 \mathrm{~mL}, 281 \mathrm{mmol})$ was heated at $130^{\circ} \mathrm{C}$ for 24 h . After this time the reaction mixture was treated with an additional portion of diethyl methylmalonate ($5 \mathrm{~mL}, 37.4 \mathrm{mmol}$) and heated at $130^{\circ} \mathrm{C}$ for an additional 12 h . After this time the reaction mixture was cooled to room temperature and evaporated under reduced pressure. The crude product was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL}$, saturated aqueous solution), dried over MgSO_{4}, filtered and evaporated in vacuo. The crude product was dissolved in benzene and evaporated in vacuo. The resulting residue was purified by column chromatography (330 g of SiO_{2}, using a gradient of hexane:ethyl acetate, $1: 0$ to $3: 1$ as eluant) to provide ethyl 3-(3-fluorophenylamino)-2-methyl-3-oxopropanoate, 17 ($22.1 \mathrm{~g}, 49 \%$ yield), as a light brown solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.81(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, 7.49-7.61 ($1 \mathrm{H}, \mathrm{m}$), 7.24-7.31 ($1 \mathrm{H}, \mathrm{m}$), 7.15-7.20 ($1 \mathrm{H}, \mathrm{m}$), 6.76-6.91 $(1 \mathrm{H}, \mathrm{m}), 4.26(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{d}$,
$J=7.0 \mathrm{~Hz}), 1.33(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz})$. Mass spectrum (ESI): $m / e=240.1$ $[\mathrm{M}+\mathrm{H}]^{+}$.

3-(3-Fluorophenylamino)-2-methyl-3-oxopropanoic acid, 18. To a stirred solution of ethyl 3-(3-fluorophenylamino)-2-methyl-3oxopropanoate, $17(21.0 \mathrm{~g}, 87.8 \mathrm{mmol})$, in THF (80 mL) was added $\mathrm{NaOH}(4.21 \mathrm{~g}, 105 \mathrm{mmol})$ in water $(20 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 1 h . After this time the reaction mixture was acidified to pH 2 with concentrated HCl . The aqueous layer was extracted with ethyl acetate $(2 \times 150 \mathrm{~mL})$, and the separated organic extracts were dried over MgSO_{4}, filtered and evaporated in vacuo to give 3-(3-fluorophenylamino)-2-methyl-3-oxopropanoic acid, 18 (16.5 g, 89% yield), as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta \mathrm{ppm}$ $10.34(1 \mathrm{H}, \mathrm{s}), 7.59(1 \mathrm{H}, \mathrm{dt}, J=11.7,2.2 \mathrm{~Hz}), 7.24-7.41(2 \mathrm{H}, \mathrm{m}), 6.88$ $(1 \mathrm{H}, \mathrm{tdd}, J=8.3,8.3,2.6,1.4 \mathrm{~Hz}), 3.49(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 1.27(3 \mathrm{H}, \mathrm{d}$, $J=7.0 \mathrm{~Hz}$). Mass spectrum (ESI): $m / e=212.1[\mathrm{M}+\mathrm{H}]^{+}$.

7-Fluoro-3-methylquinoline-2,4-diol and 5-Fluoro-3-methylquin-oline-2,4-diol, 19a, 19b. A stirred suspension of 3-(3-fluoropheny-lamino)-2-methyl-3-oxopropanoic acid, 18 ($19 \mathrm{~g}, 90 \mathrm{mmol}$), in PPA $(150 \mathrm{~mL})$ was heated at $130^{\circ} \mathrm{C}$ for 2 h . After this time the reaction mixture was cooled to room temperature and treated with 2 M aqueous NaOH until a precipitate formed. The precipitate was filtered and washed with 1 M aqueous $\mathrm{NaOH}(2 \times 30 \mathrm{~mL})$. The resulting white solid was dried under vacuum overnight to give 7 -fluoro-3-methylquinoline-2,4-diol and 5-fluoro-3-methylquinoline-2,4-diol, 19a, 19b (14.1 g, 81\% yield), as a 2.5:1 mixture of regioisomers. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): \delta \mathrm{ppm}($ major isomer $) 11.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.95(1 \mathrm{H}$, dd, $J=9.7,6.2 \mathrm{~Hz}), 7.06(2 \mathrm{H}, \mathrm{td}, J=5.1,2.3 \mathrm{~Hz}), 2.03(3 \mathrm{H}, \mathrm{s})$; (minor isomer) $11.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.33-7.55(1 \mathrm{H}, \mathrm{m}), 7.14$ $(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{dd}, J=12.6,8.1 \mathrm{~Hz}), 2.03(3 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=194.1[\mathrm{M}+\mathrm{H}]^{+}$.

2,4-Dichloro-7-fluoro-3-methylquinoline and 2,4-Dichloro-5-fluoro-3methyl quinoline, 20a, 20b. A stirred suspension of 7-fluoro-3-methylquinoline-2,4-diol and 5-fluoro-3-methylquinoline-2,4-diol, 19a, 19b ($14.0 \mathrm{~g}, 72 \mathrm{mmol}$), and $\mathrm{POCl}_{3}(68 \mathrm{~mL}, 725 \mathrm{mmol})$ was heated at $100^{\circ} \mathrm{C}$ for 2 h . After this time the reaction mixture was allowed to cool to room temperature and the POCl_{3} was evaporated in vacuo. The resulting dark brown residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ and washed with water $(4 \times 100 \mathrm{~mL})$ to give the desired product as a white solid. The compound $(\sim 11 \mathrm{~g})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and purified by column (330 g of SiO_{2} using hexane:ethyl acetate (9:1) as eluant) to give a mixture of 2,4-dichloro-7-fluoro-3-methylquinoline and 2,4-dichloro-5-fluoro-3-methyl quinoline, 20a, 20b ($7.5 \mathrm{~g}, 45 \%$ yield), in a 3.3:1 ratio of regioisomers. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}$ (major isomer) $8.52(1 \mathrm{H}, \mathrm{dd}, J=9.3,5.1 \mathrm{~Hz}), 8.03(1 \mathrm{H}, \mathrm{dd}, J=7.9$, $2.3 \mathrm{~Hz}), 7.59-7.81(1 \mathrm{H}, \mathrm{m}), 2.78-2.88(3 \mathrm{H}, \mathrm{m})$; (minor isomer) 8.20 $(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{td}, J=8.4,4.8 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{ddd}, J=$ $11.7,7.9,0.9 \mathrm{~Hz}), 2.83(3 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=229.9[\mathrm{M}+\mathrm{H}]^{+}$.

4-Chloro-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline and 4-Chloro-5-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 23d, 23e. To a stirred solution of 2,4-dichloro-7-fluoro-3-methylquinoline and 2,4-dichloro-5-fluoro-3-methyl quinoline, 20a, 20b ($5.0 \mathrm{~g}, 21.73 \mathrm{mmol}$), and 2-tri- n-butylstannylpyridine ($8.0 \mathrm{~mL}, 21.73 \mathrm{mmol}$) in toluene $(100 \mathrm{~mL})$ was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.25 \mathrm{~g}, 1.09 \mathrm{mmol})$. The reaction mixture was heated at reflux overnight. After this time the reaction mixture was cooled to room temperature and evaporated in vacuo. The resulting brown solid was triturated with hexane $(100 \mathrm{~mL})$ and filtered. The resulting brown solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by column chromatography (220 g of SiO_{2}, hexane:ethyl acetate, $3: 1$) to give, in order of elution, 4-chloro-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, $23 \mathrm{~d}(2.5 \mathrm{~g}, 42 \%$ yield $)\left\{{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.71-8.77\right.$ $(1 \mathrm{H}, \mathrm{m}), 8.26(1 \mathrm{H}, \mathrm{dd}, J=9.2,5.9 \mathrm{~Hz}), 7.86-7.95(1 \mathrm{H}, \mathrm{m}), 7.72-7.83$ $(2 \mathrm{H}, \mathrm{m}), 7.36-7.46(2 \mathrm{H}, \mathrm{m}), 2.62(3 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $\left.m / e=273.0[\mathrm{M}+\mathrm{H}]^{+}\right\}$, and 4-chloro-5-fluoro-3-methyl-2-(pyridin-2$\mathrm{yl})$ quinoline, $23 \mathrm{e}\left(0.8 \mathrm{~g}, 13 \%\right.$ yield) $\left\{{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta\right.$ ppm $8.67-8.82(1 \mathrm{H}, \mathrm{m}), 7.95(1 \mathrm{H}, \mathrm{dt}, J=8.5,1.1 \mathrm{~Hz}), 7.90(1 \mathrm{H}, \mathrm{td}, J=$ $7.7,1.8 \mathrm{~Hz}), 7.80(1 \mathrm{H}, \mathrm{dt}, J=7.8,1.2 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{td}, J=8.2,5.2 \mathrm{~Hz})$, $7.37-7.42(1 \mathrm{H}, \mathrm{m}), 7.26-7.33(1 \mathrm{H}, \mathrm{m}), 2.57-2.64(3 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $\left.m / e=273.0[\mathrm{M}+\mathrm{H}]^{+}\right\}$.

4-Chloro-7-fluoro-3-methyl-2-(pyridin-3-yl)quinoline, 23f. To a stirred solution of 2,4-dichloro-7-fluoro-3-methylquinoline, 20a (1.0 g,
$4.35 \mathrm{mmol})$, and 3-tri- n-butylstannylpyridine ($1.6 \mathrm{~mL}, 4.35 \mathrm{mmol}$) in toluene $(10 \mathrm{~mL})$ was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(251 \mathrm{mg}, 0.22 \mathrm{mmol})$, and the reaction mixture was heated at reflux overnight. The resulting brown solid was triturated with hexane $(20 \mathrm{~mL})$ and filtered. The resulting brown solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by column chromatography (40 g of SiO_{2}, hexane:ethyl acetate, $3: 1$) to give 4-chloro-7-fluoro-3-methyl-2-(pyridin-3-yl)quinoline, 23 f ($650 \mathrm{mg}, 55 \%$ yield), as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.83-8.90(1 \mathrm{H}, \mathrm{m})$, $8.74(1 \mathrm{H}, \mathrm{dd}, J=4.9,1.8 \mathrm{~Hz}), 8.28(1 \mathrm{H}, \mathrm{dd}, J=9.2,5.9 \mathrm{~Hz}), 7.93(1 \mathrm{H}$, $\mathrm{dt}, J=7.8,2.0 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{dd}, J=9.6,2.5 \mathrm{~Hz}), 7.41-7.50(2 \mathrm{H}, \mathrm{m})$, $2.56(3 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=273.0[\mathrm{M}+\mathrm{H}]^{+}$.

General Quinoline Synthesis Procedure A. To a mixture of substituted anthranilic acid (1.5 equiv) and substituted propiophenone (1.0 equiv) was added $\mathrm{POCl}_{3}(25 \mathrm{~mL})$. The mixture was heated at $90^{\circ} \mathrm{C}$ for 2 h . After this time the reaction mixture was cooled to room temperature and the excess POCl_{3} was removed in vacuo. The reaction mixture was carefully quenched with ice cold $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution, and the aqueous layer was extracted with ethyl acetate, dried and concentrated in vacuo. The crude product obtained was chromatographed using silica gel, eluting with 3% ethyl acetate in hexane.

4-Chloro-3-methyl-2-phenylquinoline, 23b. 4-Chloro-3-methyl-2phenylquinoline, 23b, was prepared according to quinoline synthesis procedure A. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.26(1 \mathrm{H}, \mathrm{dd}, J=8.4$, $1.0 \mathrm{~Hz}), 8.12-8.17(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{ddd}, J=8.4,6.9,1.4 \mathrm{~Hz}), 7.61-$ $7.68(1 \mathrm{H}, \mathrm{m}), 7.55-7.59(2 \mathrm{H}, \mathrm{m}), 7.43-7.53(3 \mathrm{H}, \mathrm{m}), 2.54(3 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=254.2[\mathrm{M}+\mathrm{H}]^{+}$.

4-Chloro-2-(2-fluorophenyl)-3-methylquinoline, 23c. 4-Chloro-2-(2-fluorophenyl)-3-methylquinoline, 23c, was prepared according to quinoline synthesis procedure A. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}$ $8.28(1 \mathrm{H}, \mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}), 8.11-8.16(1 \mathrm{H}, \mathrm{m}), 7.71-7.77(1 \mathrm{H}, \mathrm{m})$, 7.63-7.69 ($1 \mathrm{H}, \mathrm{m}$), 7.43-7.55 ($2 \mathrm{H}, \mathrm{m}$), 7.29-7.34 ($1 \mathrm{H}, \mathrm{m}$), 7.20 $(1 \mathrm{H}, \mathrm{ddd}, J=9.6,8.4,1.0 \mathrm{~Hz}), 2.47(3 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz})$. Mass spectrum (ESI): $m / e=272.1[\mathrm{M}+\mathrm{H}]^{+}$.

General Coupling Procedure B. A mixture of indoline (1 equiv), quinoline (2 equiv), cesium carbonate (2 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (0.1 equiv) and (\pm) BINAP (0.15 equiv) was dissolved in 1,4 -dioxane $(0.4 \mathrm{M})$. The resulting mixture was purged with argon and subjected to microwave heating at $140{ }^{\circ} \mathrm{C}$ for 3 h . The crude residue was purified by chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:ethyl acetate $)$ to give the desired morpholinoquinoline product.

General Coupling Procedure C. To a stirred solution of the halodimethylindoline (or the halodimethylpyrrolopyridine) (1 equiv) in dimethylformamide $(0.03 \mathrm{M})$ was added $\mathrm{NaH}(60 \%$ dispersion in oil, 1.5 equiv). The reaction mixture was stirred at room temperature for 20 min . After this time the substituted dichloroquinoline (1 equiv) in dimethylformamide (0.03 M) was added. The resulting mixture was heated at $130{ }^{\circ} \mathrm{C}$ for 12 h . After this time the reaction mixture was allowed to cool to room temperature and quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \%$ aqueous solution). The reaction mixture was then treated with ethyl acetate and water. The separated organic layer was washed with LiCl (5% aqueous solution), dried over MgSO_{4}, filtered and evaporated in vacuo. The crude residue was purified by chromatography (SiO_{2}, hexane:ethyl acetate) to give the desired bromoquinolines.

6-Chloro-4-(3,3-dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-indol-1-yl)-2,3-dimethylquinoline, 24a. General coupling procedure B using 4-(3,3-dimethylindolin-6-yl)morpholine, $4(0.15 \mathrm{~g}, 0.65 \mathrm{mmol})$, and 4,6-dichloro-2,3-dimethylquinoline, 23a ($0.292 \mathrm{~g}, 1.29 \mathrm{mmol}$), gave 6-chloro-4-(3,3-dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-indol-1-yl)-2,3-dimethylquinoline, 24a ($80 \mathrm{mg}, 29 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}), TFA salt, $\delta \mathrm{ppm} 8.09(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.84-7.97$ $(2 \mathrm{H}, \mathrm{m}), 7.15(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{s})$, $3.98(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 3.57-3.67(4 \mathrm{H}, \mathrm{m})$, 2.87-2.98 ($4 \mathrm{H}, \mathrm{m}$), $2.79(3 \mathrm{H}, \mathrm{s}), 2.20(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s})$. HRMS (ESI): $m / z 422.2009[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}\right.$ requires 422.2000).

4-(3,3-Dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-indol-1-yl)-2,3-dimethylquinoline, 1. A solution of 6-chloro-4-(3,3-dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-indol-1-yl)-2,3-dimethylquinoline, 24a $(10 \mathrm{mg}, 0.024 \mathrm{mmol})$, in methanol (3 mL) was purged with N_{2}. After the mixture was purged, a catalytic amount of triethylamine and 10% $\mathrm{Pd} / \mathrm{C}(0.003 \mathrm{~g}, 0.002 \mathrm{mmol})$ were added. The resulting mixture was
stirred at room temperature for 2 h under a hydrogen atmosphere. After this time the reaction mixture was filtered through a pad of Celite and the solvent was evaporated in vacuo to give 4-(3,3-dimethyl-6-(4-morpholinyl)-2,3-dihydro- 1 H -indol-1-yl)-2,3-dimethylquinoline, 1 (2.9 $\mathrm{mg}, 31 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 8.12(1 \mathrm{H}, \mathrm{d}, J=$ $8.1 \mathrm{~Hz}), 7.80(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.38-7.43$ $(1 \mathrm{H}, \mathrm{m}), 7.06(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 5.52(1 \mathrm{H}, \mathrm{s})$, $3.63-3.78(6 \mathrm{H}, \mathrm{m}), 2.88-2.97(4 \mathrm{H}, \mathrm{m}), 2.73-2.81(3 \mathrm{H}, \mathrm{m}), 2.26-2.32$ $(3 \mathrm{H}, \mathrm{m}), 1.42-1.53(6 \mathrm{H}, \mathrm{m})$. HRMS (ESI): $m / z 388.2398[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}\right.$ requires 388.2390$)$.

4-(3,3-Dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-indol-1-yl)-3-methyl-2-phenylquinoline, 24b. General coupling procedure C using 4-(3,3-dimethylindolin-6-yl)morpholine, $4(0.100 \mathrm{~g}, 0.430 \mathrm{mmol})$, and 4-chloro-3-methyl-2-phenylquinoline, 23b ($0.218 \mathrm{~g}, 0.861 \mathrm{mmol}$), gave 4-(3,3-dimethyl-6-(4-morpholinyl)-2,3-dihydro- 1 H -indol-1-yl)-3-methyl-2-phenylquinoline, 24b ($0.045 \mathrm{~g}, 23 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d $\left.d_{6}\right): \delta \mathrm{ppm} 8.35(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 8.17(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $8.01(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.81-7.90(2 \mathrm{H}, \mathrm{m}), 7.77(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz})$, $7.68(3 \mathrm{H}, \mathrm{br} s), 7.31(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{br}$ s $), 6.56(1 \mathrm{H}, \mathrm{br}$ s), $4.29(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 3.82(4 \mathrm{H}, \mathrm{br} \mathrm{s})$, $3.19(4 \mathrm{H}, \mathrm{br}$ s), $2.10(3 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{s}), 1.31-1.39(3 \mathrm{H}, \mathrm{m})$. HRMS (ESI): $m / z 450.2549[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}\right.$ requires 450.2547).

4-(3,3-Dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-indol-1-yl)-2-(2-fluorophenyl)-3-methylquinoline, 24c. 24c was prepared according to general coupling procedure B using 4 -(3,3-dimethylindolin- $6-\mathrm{yl})$ morpholine, 4 ($0.043 \mathrm{~g}, 0.184 \mathrm{mmol}$), and 4-chloro-2-(2-fluorophenyl)-3-methylquinoline, $23 \mathrm{c}(0.050 \mathrm{~g}, 0.184 \mathrm{mmol})$. After purification by HPLC, 4-(3,3-dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-indol-1-yl)-2-(2-fluorophenyl)-3-methylquinoline, 24c $(0.053 \mathrm{~g}, 62 \%$ yield), was obtained. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta \mathrm{ppm} 8.00(1 \mathrm{H}, \mathrm{d}, J=7.8$ $\mathrm{Hz}), 7.82(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.52(3 \mathrm{H}, \mathrm{m})$, $7.30(2 \mathrm{H}, \mathrm{m}), 6.98(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.20(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.0 \mathrm{~Hz})$, $5.46(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 3.60(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz})$, $3.51(4 \mathrm{H}, \mathrm{m}), 2.77(4 \mathrm{H}, \mathrm{m}), 1.99(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{s})$. HRMS (ESI): $m / z 468.2450[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{FN}_{3} \mathrm{O}\right.$ requires 468.2452).

4-(3,3-Dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-indol-1-yl)-7-fluoro-3-methyl-2-(2-pyridinyl)quinoline, 24d. 24d was prepared according to general coupling procedure C using 4-(3,3-dimethylindo-lin-6-yl)morpholine, 4 ($85 \mathrm{mg}, 0.367 \mathrm{mmol}$), and 4-chloro-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 23d ($100 \mathrm{mg}, 367 \mu \mathrm{~mol}$). After purification, 4-(3,3-dimethyl-6-(4-morpholinyl)-2,3-dihydro- 1 H -indol-1-yl)-7-fluoro-3-methyl-2-(2-pyridinyl)quinoline, 24d (10 mg, 6\% yield), was obtained as a yellow film. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ ppm 8.73-8.76 ($1 \mathrm{H}, \mathrm{m}$), 7.80-7.94 ($4 \mathrm{H}, \mathrm{m}$), $7.40(1 \mathrm{H}, \mathrm{ddd}, J=7.6$, $4.9,1.5 \mathrm{~Hz}), 7.20-7.27(1 \mathrm{H}, \mathrm{m}), 7.08(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.31(1 \mathrm{H}, \mathrm{dd}$, $J=8.1,2.2 \mathrm{~Hz}), 5.59(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 3.69-3.81(6 \mathrm{H}, \mathrm{m}), 2.89-3.03$ ($4 \mathrm{H}, \mathrm{m}$), $2.37(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s})$. HRMS (ESI): m / z $469.2412[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{FN}_{4} \mathrm{O}\right.$ requires 469.2405).

4-(3,3-Dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-indol-1-yl)-5-fluoro-3-methyl-2-(2-pyridinyl)quinoline, 24e. 24e was prepared according to general coupling procedure C using 4-(3,3-dimethylindo-lin-6-yl)morpholine, 4 ($348 \mathrm{mg}, 1496 \mu \mathrm{~mol}$), and 4-chloro-5-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 23 e ($340 \mathrm{mg}, 1247 \mu \mathrm{~mol}$). After purification, 4-(3,3-dimethyl-6-(4-morpholinyl)-2,3-dihydro- 1 H -indol-1-yl)-5-fluoro-3-methyl-2-(2-pyridinyl)quinoline, 24 e ($13 \mathrm{mg}, 2 \%$ yield), was obtained as a yellow film. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.76$ $(1 \mathrm{H}, \mathrm{dd}, J=3.5,1.2 \mathrm{~Hz}), 8.02(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.83-7.96(2 \mathrm{H}, \mathrm{m})$, $7.60(1 \mathrm{H}, \mathrm{td}, J=8.1,5.3 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{ddd}, J=7.0,5.1,2.0 \mathrm{~Hz}), 7.08-$ $7.17(1 \mathrm{H}, \mathrm{m}), 7.04(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.2 \mathrm{~Hz})$, $5.50(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 3.76-3.85(1 \mathrm{H}, \mathrm{m}), 3.60-3.76(5 \mathrm{H}, \mathrm{m}), 2.86-$ $3.02(4 \mathrm{H}, \mathrm{m}), 2.42(3 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{s}), 1.44(3 \mathrm{H}, \mathrm{s})$. HRMS (ESI): $m / z 469.2405[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{FN}_{4} \mathrm{O}\right.$ requires 469.2405).

4-(3,3-Dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-indol-1-yl)-7-fluoro-3-methyl-2-(3-pyridinyl)quinoline, 24f. 24f was prepared according to general coupling procedure C using 4-(3,3-dimethylindolin-6yl)morpholine, 4 ($213 \mathrm{mg}, 0.92 \mathrm{mmol}$), and 4-chloro-7-fluoro-3-methyl-2-(pyridin-3-yl)quinoline ($250 \mathrm{mg}, 0.92 \mathrm{mmol}$), 23f. After purification, 4-(3,3-dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-indol-1-yl)-7-fluoro-3-ethyl-2-(3-pyridinyl)quinoline, $24 \mathrm{f}(50 \mathrm{mg}, 12 \%$ yield), was obtained as
a yellow film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 8.90(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $8.66-8.81(1 \mathrm{H}, \mathrm{m}), 8.00(1 \mathrm{H}, \mathrm{dt}, J=7.8,2.0 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{dd}, J=9.4$, $5.9 \mathrm{~Hz}), 7.81(1 \mathrm{H}, \mathrm{dd}, J=10.0,2.5 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{dd}, J=7.8,4.7 \mathrm{~Hz})$, $7.23-7.30(1 \mathrm{H}, \mathrm{m}), 7.09(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.34(1 \mathrm{H}, \mathrm{dd}, J=8.2$, $2.3 \mathrm{~Hz}), 5.61(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 3.68-3.81(6 \mathrm{H}, \mathrm{m}), 2.90-3.02(4 \mathrm{H}, \mathrm{m})$, $2.30(3 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.47(3 \mathrm{H}, \mathrm{s})$. HRMS (ESI): $m / z 469.2398$ $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{FN}_{4} \mathrm{O}\right.$ requires 469.2405$)$.

6-Bromo-1-(6-chloro-2,3-dimethylquinolin-4-yl)-2', $3^{\prime}, 5^{\prime}, 6^{\prime}-$ tetrahydrospiro[indoline-3,4'-pyran], 25a. General coupling procedure C using 6-bromo- $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-3, 4^{\prime}-pyran], $10(0.3 \mathrm{~g}, 1.12 \mathrm{mmol})$, and 4,6-dichloro-2,3-dimethylquinoline, 23a ($0.2783 \mathrm{~g}, 1.23 \mathrm{mmol}$), gave 6-bromo-1-(6-chloro-2,3-dimethylquino-lin-4-yl)- $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline-3,4'-pyran], 25a (0.264 g, 51% yield), as a brown solid. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta \mathrm{ppm}$ $8.03(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}$, $J=2.2 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}), 5.94$ $(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 3.80-3.93(3 \mathrm{H}, \mathrm{m}), 3.39-$ $3.54(2 \mathrm{H}, \mathrm{m}), 2.68(3 \mathrm{H}, \mathrm{s}), 2.22(3 \mathrm{H}, \mathrm{s}), 1.94-2.06(2 \mathrm{H}, \mathrm{m}), 1.85$ $(1 \mathrm{H}, \mathrm{d}, J=13.4 \mathrm{~Hz}), 1.73(1 \mathrm{H}, \mathrm{dd}, J=13.4,1.5 \mathrm{~Hz})$. Mass spectrum (ESI): $m / e=457.1\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $459.1\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

1-(6-Chloro-2,3-dimethyl-4-quinolinyl)-6-(4-morpholinyl)1,2,2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-hexahydrospiro[indole-3,4'-pyran], 26a. A suspension of 6-bromo-1-(6-chloro-2,3-dimethylquinolin-4-yl)-2', $3^{\prime}, 5^{\prime}, 6^{\prime}-$ tetrahydrospiro[indoline-3,4'-pyran], 25a ($230 \mathrm{mg}, 0.50 \mathrm{mmol}$) and morpholine ($87 \mu \mathrm{~L}, 1 \mathrm{mmol}$) was degassed with argon for 20 min . To the suspension were added $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(207 \mathrm{mg}$, $1.5 \mathrm{mmol})$, and L-proline ($23 \mathrm{mg}, 0.2 \mathrm{mmol}$), and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 24 h the mixture was cooled to room temperature. To the mixture was added water $(30 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The mixture was purified by column chromatography on a silica gel column using 0% to 100% gradient of ethyl acetate in hexane as eluent to give 1-(6-chloro-2,3-dimethyl-4-quinolinyl)-6-(4-morpholinyl)-1,2,2', $3^{\prime}, 5^{\prime}, 6^{\prime}$ -hexahydrospiro[indole-3, 4^{\prime}-pyran], 26a ($0.055 \mathrm{~g}, 23.4 \%$ yield), as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta \mathrm{ppm} 7.97-8.03(1 \mathrm{H}, \mathrm{m})$, $7.67(2 \mathrm{H}, \mathrm{dd}, J=4.5,2.1 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{dd}, J=$ $8.1,1.5 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 3.94(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 3.82-$ $3.91(2 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 3.54-3.59(4 \mathrm{H}, \mathrm{m}), 3.40-3.52$ $(2 \mathrm{H}, \mathrm{m}), 2.80-2.87(4 \mathrm{H}, \mathrm{m}), 2.68(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}), 1.92-2.02$ $(2 \mathrm{H}, \mathrm{m}), 1.78(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}), 1.68(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz})$. Mass spectrum (ESI): $m / e=464.2[\mathrm{M}+\mathrm{H}]^{+}$.

1-(2,3-Dimethyl-4-quinolinyl)-6-(4-morpholinyl)-1,2,2', $3^{\prime}, 5^{\prime}, 6^{\prime}-$ hexahydrospiro[indole-3,4'-pyran], 26b. A mixture of 1-(6-chloro-2,3-dimethyl-4-quinolinyl)-6-(4-morpholinyl)-1,2, $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$ -hexahydrospiro[indole-3,4'-pyran], 26a ($0.027 \mathrm{~g}, 0.058 \mathrm{mmol}$), triethylamine $(0.008 \mathrm{~mL}, 0.058 \mathrm{mmol})$, and $10 \% \mathrm{Pd} / \mathrm{C}(0.02 \mathrm{~g}$, $0.0188 \mathrm{mmol})$ in methanol-ethyl acetate $(2: 1,3 \mathrm{~mL})$ was stirred under hydrogen at room temperature. After 3 h , the mixture was filtered through a Celite pad and the pad was washed with methanol and ethyl acetate to give a \tan solid. The \tan solid was purified by column chromatography on a silica gel column using 0 to 100% gradient of ethyl acetate in hexane as eluent to give 1-(2,3-dimethyl-4-quinolinyl)-6-(4-morpholinyl)-1,2, $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-hexahydrospiro[indole-3,4'-pyran], 26b ($9.5 \mathrm{mg}, 38 \%$ yield), as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right): \delta \operatorname{ppm} 7.97(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.62-7.68$ $(1 \mathrm{H}, \mathrm{m}), 7.42-7.49(1 \mathrm{H}, \mathrm{m}), 7.08(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.23(1 \mathrm{H}, \mathrm{dd}$, $J=8.2,2.1 \mathrm{~Hz}), 5.41(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 3.77-3.96(4 \mathrm{H}, \mathrm{m}), 3.52-3.59$ $(4 \mathrm{H}, \mathrm{m}), 3.41-3.51(2 \mathrm{H}, \mathrm{m}), 2.81(4 \mathrm{H}, \mathrm{dd}, J=5.4,2.9 \mathrm{~Hz}), 2.68(3 \mathrm{H}$, s), $2.22(3 \mathrm{H}, \mathrm{s}), 1.91-2.03(2 \mathrm{H}, \mathrm{m}), 1.78-1.85(1 \mathrm{H}, \mathrm{m}), 1.65-1.72(1$ H, m). HRMS (ESI): $m / z 430.2505[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2}\right.$ requires 430.2496).

1-(3-Methyl-2-phenyl-4-quinolinyl)-6-(4-morpholinyl)-1,2,2', $3^{\prime}, 5^{\prime}, 6^{\prime}$ -hexahydrospiro[indole-3,4'-pyran], 26c. 26c was prepared according to general procedure C using 6-morpholino- $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro-[indoline-3, 4^{\prime}-pyran], $13(0.216 \mathrm{~g}, 0.788 \mathrm{mmol})$, and 4-chloro-3-methyl-2-phenylquinoline, $\mathbf{2 3 b}(0.100 \mathrm{~g}, 0.394 \mathrm{mmol})$. After purification, 1-(3-methyl-2-phenyl-4-quinolinyl)-6-(4-morpholinyl)-1,2, $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$ -hexahydrospiro[indole-3,4'-pyran], 26c ($0.071 \mathrm{~g}, 37 \%$ yield), was obtained. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta \mathrm{ppm} 8.06-8.10(1 \mathrm{H}, \mathrm{m})$,
7.80-7.84 ($1 \mathrm{H}, \mathrm{m}$), $7.74(1 \mathrm{H}, \mathrm{ddd}, J=8.4,6.8,1.5 \mathrm{~Hz}), 7.64-7.69(2 \mathrm{H}$, m), $7.48-7.59(4 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.27(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.2$ $\mathrm{Hz}), 5.58(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 4.01(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 3.83-3.97(3 \mathrm{H}, \mathrm{m})$, $3.56-3.63(4 \mathrm{H}, \mathrm{m}), 3.48(2 \mathrm{H}, \mathrm{tt}, J=12.0,2.1 \mathrm{~Hz}), 2.82-2.91(4 \mathrm{H}, \mathrm{m})$, $2.22(3 \mathrm{H}, \mathrm{s}), 1.93-2.05(2 \mathrm{H}, \mathrm{m}), 1.82-1.88(1 \mathrm{H}, \mathrm{m}), 1.65-1.73(1 \mathrm{H}, \mathrm{m})$. HRMS (ESI): $m / z 492.2644[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2}\right.$ requires 492.2652).

6-Bromo-1-(7-fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)1,2,2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-hexahydrospiro[indole-3,4'-pyran], 25d. 25d was prepared according to general coupling procedure C using 6-bromo$2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydrospiro[indoline- $3,4^{\prime}$-pyran], $10(98 \mathrm{mg}, 367 \mu \mathrm{~mol})$, and 4-chloro-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 23d (100 mg, $367 \mu \mathrm{~mol}$). After purification, 6-bromo-1-(7-fluoro-3-methyl-2-(2-pyr-idinyl)-4-quinolinyl)-1,2,2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-hexahydrospiro[indole-3, 4^{\prime}-pyran], 25d ($55 \mathrm{mg}, 30 \%$ yield), was obtained as a yellow film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 8.74(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 7.89-7.98(2 \mathrm{H}, \mathrm{m})$, $7.85(1 \mathrm{H}, \mathrm{dd}, J=10.0,2.5 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{dd}, J=9.2,6.1 \mathrm{~Hz}), 7.41(1 \mathrm{H}$, ddd, $J=6.7,4.5,2.5 \mathrm{~Hz}), 7.28-7.33(1 \mathrm{H}, \mathrm{m}), 7.07(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.89$ $(1 \mathrm{H}, \mathrm{dd}, J=7.8,2.0 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 3.93-4.10(4 \mathrm{H}, \mathrm{m})$, $3.45-3.60(2 \mathrm{H}, \mathrm{m}), 2.38(3 \mathrm{H}, \mathrm{s}), 2.08-2.25(2 \mathrm{H}, \mathrm{m}), 1.91(1 \mathrm{H}, \mathrm{dd}, J=$ $13.9,2.5 \mathrm{~Hz}), 1.81(1 \mathrm{H}, \mathrm{dd}, J=13.7,2.3 \mathrm{~Hz})$. Mass spectrum (ESI): m / e $504\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $506\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

1-(7-Fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-6-(4-morpho-linyl)-1,2,2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-hexahydrospiro[indole-3,4'-pyran], 26d. A suspension of 6-bromo-1-(7-fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl) $-1,2,2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-hexahydrospiro[indole-3,4'-pyran], 25d (100 mg , 0.198 mmol), morpholine ($35 \mu \mathrm{~L}, 397 \mu \mathrm{~mol}$) and DMSO (2.5 mL) was degassed with argon for 15 min in a Schlenk tube. To the mixture were added copper(I) iodide ($8 \mathrm{mg}, 40 \mu \mathrm{~mol}$), L-proline ($9 \mathrm{mg}, 79 \mu \mathrm{~mol}$) and potassium carbonate ($82 \mathrm{mg}, 595 \mu \mathrm{~mol}$), and the mixture was heated at $120^{\circ} \mathrm{C}$ overnight. After this time the reaction mixture was cooled to room temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and water $(40 \mathrm{~mL})$. The separated organic layer was dried over MgSO_{4}, filtered and evaporated in vacuo. Column chromatography (hexane:ethyl acetate, 1:0 to $0: 1)$ gave the desired product as a yellow oil. The product was further purified by reverse phase HPLC to give 1-(7-fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-6-(4-morpholinyl)-1,2,2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-hexahydrospiro-[indole-3, 4^{\prime}-pyran], 26d ($13 \mathrm{mg}, 13 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.76(1 \mathrm{H}, \mathrm{dd}, J=3.7,1.0 \mathrm{~Hz}), 7.75-8.00(4 \mathrm{H}, \mathrm{m})$, $7.41(1 \mathrm{H}, \mathrm{ddd}, J=7.1,5.0,1.6 \mathrm{~Hz}), 7.21-7.27(1 \mathrm{H}, \mathrm{m}), 7.13(1 \mathrm{H}$, d, $J=8.2 \mathrm{~Hz}), 6.35(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}), 5.61(1 \mathrm{H}, \mathrm{d}, J=2.3$ Hz), 3.96-4.09 (3 H, m), 3.89-3.96 (1 H, m), 3.70-3.79 (4 H, m), $3.49-3.60(2 \mathrm{H}, \mathrm{m}, J=12.2,12.2,2.9,2.7 \mathrm{~Hz}), 2.91-3.04(4 \mathrm{H}, \mathrm{m})$, $2.38(3 \mathrm{H}, \mathrm{s}), 2.09-2.22(2 \mathrm{H}, \mathrm{m}), 1.76-1.93(2 \mathrm{H}, \mathrm{m})$. HRMS (ESI): $m / z 511.2504[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{FN}_{4} \mathrm{O}_{2}\right.$ requires 511.2510).
tert-Butyl 6-Bromo-3,3-bis((methylsulfonyloxy)methyl)-2-oxoin-doline-1-carboxylate, 28. To an ice-cooled solution of tert-butyl 6-bromo-3,3-bis(hydroxymethyl)-2-oxoindoline-1-carboxylate, 27 (5.27 g , $14.16 \mathrm{mmol})$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(94 \mathrm{~mL})$ was added triethylamine $(7.89 \mathrm{~mL}$, 56.6 mmol) followed by methanesulfonyl chloride ($2.21 \mathrm{~mL}, 28.3$ $\mathrm{mmol})$. The solution was stirred for 1 h , and then it was concentrated under reduced pressure. Purification by column chromatography (eluting with a gradient of $10-60 \%$ ethyl acetate in hexane) gave tertbutyl 6-bromo-3,3-bis((methylsulfonyloxy)methyl)-2-oxoindoline-1carboxylate, $28(4.21 \mathrm{~g}, 56 \%)$, as a white foam. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.15(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 7.43(1 \mathrm{H}, \mathrm{m}, J=8.1,1.7 \mathrm{~Hz})$, $7.33(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 4.58(2 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 4.46(2 \mathrm{H}, \mathrm{d}, J=$ $10.4 \mathrm{~Hz}), 2.98(6 \mathrm{H}, \mathrm{s}), 1.67(9 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=550.0$ $\left[(\mathrm{M}+\mathrm{Na})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $552.0\left[(\mathrm{M}+\mathrm{Na})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

6-Bromospiro[indoline-3,3'-thietan]-2-one, 29. To a solution of tert-butyl 6-bromo-3,3-bis((methylsulfonyloxy)methyl)-2-oxoindoline-1-carboxylate, 28 ($3.70 \mathrm{~g}, 7.0 \mathrm{mmol}$), in anhydrous dimethylformamide (33 mL , deoxygenated with argon for 10 min) was added sodium sulfide nonahydrate ($1.01 \mathrm{~g}, 4.20 \mathrm{mmol}$) under an argon atmosphere. The solution was stirred at $110^{\circ} \mathrm{C}$ for 3 h , poured into saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The combined organic extracts were dried over MgSO_{4}, filtered and evaporated in vacuo. Purification by column chromatography (eluting with a gradient of $10-50 \%$ ethyl acetate in hexane) gave 6 -bromospiro[indoline-3,3'-thietan]-2-one, 29 ($0.248 \mathrm{~g}, 13 \%$), as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 7.78-7.98(2 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.7 \mathrm{~Hz})$,
$7.07(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 3.89(2 \mathrm{H}, \mathrm{d}, J=9.59 \mathrm{~Hz}), 3.12(2 \mathrm{H}, \mathrm{d}, J=$ $9.6 \mathrm{~Hz})$. Mass spectrum (ESI): $m / e=270.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and 271.9 $\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

6-Bromo-1,2-dihydrospiro[indole-3,3'-thietane], 30. To a solution of 6-bromospiro[indoline-3, 3^{\prime}-thietan]-2-one, 29 ($0.260 \mathrm{~g}, 0.962$ mmol), in toluene (39 mL) was added $\operatorname{Red}-\mathrm{Al}(60 \%$ in toluene, 1.47 mL , 4.81 mmol) dropwise under an atmosphere of argon gas. The solution was stirred at $80^{\circ} \mathrm{C}$ for 40 min , cooled in an ice bath, quenched with aqueous 2 N NaOH and treated with ethyl acetate. The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo to give 6-bromo-1,2-dihydrospiro[indole-3, 3^{\prime}-thietane], 30, as a tan solid. Product used without further purification in the next step. Mass spectrum (ESI): $m / e=256.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $258.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

1-Acetyl-6-bromo-1,2-dihydrospiro[indole-3,3'-thietane], 31. To an ice cooled solution of 6-bromo-1,2-dihydrospiro[indole-3, 3^{\prime}-thietane], $30(0.25 \mathrm{~g}, 0.96 \mathrm{mmol})$, 4-dimethylaminopyridine ($5.89 \mathrm{mg}, 0.048$ $\mathrm{mmol})$, and triethylamine ($0.269 \mathrm{~mL}, 1.928 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.64 \mathrm{~mL})$ was added acetyl chloride $(0.137 \mathrm{~mL}, 1.928 \mathrm{mmol})$. The solution was stirred for 5 min at this temperature, the ice bath was removed and the solution was stirred at room temperature for 3 h . The reaction mixture was poured into 2 N HCl aqueous solution and extracted with ethyl acetate. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure to give 1 -acetyl-6-bromo-1,2-dihydrospiro-[indole-3, 3^{\prime}-thietane], 31, as a yellow solid. The product was used without further purification in the next step. Mass spectrum (ESI): $m / e=$ $297.9\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $300.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

1-Acetyl-6-bromo-1,2-dihydrospiro[indole-3,3'-thietane] 1', 1'Dioxide, 32. To a stirred ice-cooled solution of 1-acetyl-6-bromo-1,2-dihydrospiro[indole-3,3'-thietane], $31(0.288 \mathrm{~g}, 0.97 \mathrm{mmol})$, in a mixture of water $(2.4 \mathrm{~mL})$, methanol $(18.9 \mathrm{~mL})$, and acetone $(4.7 \mathrm{~mL})$ was added a solution of Oxone $(1.19 \mathrm{~g}, 1.93 \mathrm{mmol})$ in water $(1.8 \mathrm{~mL})$. The ice bath was removed, and the solution was stirred at room temperature for 4 h . The mixture was poured into saturated aqueous ammonium chloride and extracted with ethyl acetate. The combined organic extracts were dried over MgSO_{4}, filtered and evaporated in vacuo to give 1 -acetyl-6-bromo-1,2-dihydrospiro[indole-3,3'-thietane] $1^{\prime}, 1^{\prime}$-dioxide, 32 ($0.077 \mathrm{~g}, 24 \%$ from 30) as a tan solid. Mass spectrum (ESI): $m / e=330.0$ $\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $332.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

1-Acetyl-6-(4-morpholinyl)-1,2-dihydrospiro[indole-3,3'-thietane] $1^{\prime}, 1^{\prime}$-Dioxide, 33. To a microwave vessel were added sodium tertbutoxide ($0.045 \mathrm{~g}, 0.466 \mathrm{mmol}$), morpholine, $(0.030 \mathrm{~mL}, 0.350 \mathrm{mmol})$, XPhos $(0.022 \mathrm{~g}, 0.047 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.021 \mathrm{~g}, 0.023 \mathrm{mmol})$, and $1-$ acetyl-6-bromo-1,2-dihydrospiro[indole-3,3'-thietane] $1^{\prime}, 1^{\prime}$-dioxide, 32 $(0.077 \mathrm{~g}, 0.233 \mathrm{mmol})$, in 1,4-dioxane $(2.3 \mathrm{~mL})$. The suspension was deoxygenated with argon for 5 min and stirred at $110{ }^{\circ} \mathrm{C}$ for 90 min under microwave irradiation. The crude mixture was loaded directly onto a silica gel column (eluting with a gradient of $0-10 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 1-acetyl-6-(4-morpholinyl)-1,2-dihydrospiro[indole-3,3'-thietane] $1^{\prime}, 1^{\prime}$-dioxide, 33 ($0.046 \mathrm{~g}, 59 \%$), as a tan oil. Mass spectrum (ESI): $m / e=337.1[\mathrm{M}+\mathrm{H}]^{+}$.

6-(4-Morpholinyl)-1,2-dihydrospiro[indole-3,3'-thietane] $1^{\prime}, 1^{\prime}$-Dioxide, 34. To a solution of 1-acetyl-6-(4-morpholinyl)-1,2-dihydrospiro[indole-3,3'-thietane] $1^{\prime}, 1^{\prime}$-dioxide, $33(0.046 \mathrm{~g}, 0.137$ $\mathrm{mmol})$, in methanol $(1.4 \mathrm{~mL})$ was added 5.0 N HCl solution $(0.27 \mathrm{~mL}, 1.37$ $\mathrm{mmol})$. The solution was stirred at $60^{\circ} \mathrm{C}$ for 3 h , and then it was cooled to room temperature, poured into saturated aqueous NaHCO_{3}, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over MgSO_{4} and evaporated in vacuo to give 6 -(4-morpholinyl)-1,2-dihydrospiro[indole-3, 3^{\prime}-thietane] $1^{\prime}, 1^{\prime}$-dioxide, 34 ($0.026 \mathrm{~g}, 65 \%$), as a brown solid. Mass spectrum (ESI): $m / e=295.1[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl 6'-Bromo-2,2-dimethyl-2'-oxospiro[[1,3]dioxane-5,3'-indoline]-1'-carboxylate, 35. To a solution of tert-butyl 6-bromo-3,3-bis(hydroxymethyl)-2-oxoindoline-1-carboxylate, 27 (1.00 g, 2.69 mmol), and 4-methylbenzenesulfonic acid hydrate ($0.026 \mathrm{~g}, 0.134$ mmol) in dimethylformamide (27 mL) was added 2,2-dimethoxypropane $(0.49 \mathrm{~mL}, 4.03 \mathrm{mmol})$. The solution was stirred at room temperature overnight followed by the addition of additional 2,2-dimethoxypropane ($0.49 \mathrm{~mL}, 4.03 \mathrm{mmol}$) and 4-methylbenzenesulfonic acid hydrate $(0.026 \mathrm{~g}, 0.134 \mathrm{mmol})$. After stirring at $60^{\circ} \mathrm{C}$ for 5 h , the solution was poured into saturated aqueous NaHCO_{3} and extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were purified by column chromatography (eluting with a gradient of $0-30 \%$ ethyl acetate in hexane) to give tert-butyl 6'-bromo-2,2-dimethyl-2'-oxospiro[[1,3]dioxane-5,3'-indoline]-1'-carboxylate, $35(0.520 \mathrm{~g}, 47 \%)$, as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta \mathrm{ppm} 7.99(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{d}, J=$ $8.0 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{dd}, J=8.12,1.9 \mathrm{~Hz}), 4.18(2 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 3.79$ $(2 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 1.43-1.64(15 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $m / e=$ $434.0\left[(\mathrm{M}+\mathrm{Na})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $436.0\left[(\mathrm{M}+\mathrm{Na})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

2,2-Dimethyl-6'-morpholinospiro[[1,3]dioxane-5,3'-indolin]-2'one, 36. To a microwave vessel were added sodium tert-butoxide $(0.19 \mathrm{~g}, 1.99 \mathrm{mmol})$, morpholine $(0.13 \mathrm{~mL}, 1.49 \mathrm{mmol})$, XPhos $(0.095 \mathrm{~g}$, $0.20 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.091 \mathrm{~g}, 0.099 \mathrm{mmol})$, and tert-butyl 6'-bromo-2,2-dimethyl-2'-oxospiro[[1,3]dioxane-5,3'-indoline]-1'-carboxylate, 35 ($0.41 \mathrm{~g}, 0.99 \mathrm{mmol}$), in 1,4-dioxane (9.9 mL). The mixture was deoxygenated with argon for 5 min and stirred at $110^{\circ} \mathrm{C}$ for 90 min under microwave irradiation. The resulting mixture was purified by column chromatography (eluting with a gradient of 10-70\% ethyl acetate in hexane) to give 2,2-dimethyl-6'-morpholinospiro[[1,3]dioxane-$5,3^{\prime}$-indolin]-2'-one, $36(0.111 \mathrm{~g}, 35 \%)$, as a white solid. Mass spectrum (ESI): $m / e=319.2[\mathrm{M}+\mathrm{H}]^{+}$.

2,2-Dimethyl-6'-morpholinospiro[[1,3]dioxane-5,3'-indoline], 37. To a solution of 2,2-dimethyl- 6^{\prime}-morpholinospiro[$[1,3]$ dioxane- $5,3^{\prime}$ -indolin]-2'-one, $36(0.11 \mathrm{~g}, 0.35 \mathrm{mmol})$, in toluene (14 mL) was added Red- $\mathrm{Al}(60 \%$ in toluene, $0.53 \mathrm{~mL}, 1.74 \mathrm{mmol})$. After stirring at $80^{\circ} \mathrm{C}$ for 40 min , the solution was poured into a mixture of ice and 2 N NaOH . The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were dried over MgSO_{4}, filtered and evaporated in vacuo. Purification by column chromatography (eluting with a gradient of 5-60\% ethyl acetate in hexane) gave 2,2-dimethyl- 6^{\prime}-morpholinospiro[$\left[1,3\right.$]dioxane- $5,3^{\prime}$-indoline], 37 ($0.056 \mathrm{~g}, 53 \%$), as a white solid. Mass spectrum (ESI): $m / e=305.2[\mathrm{M}+\mathrm{H}]^{+}$.

1-(7-Fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-6-(4-morpho-linyl)-1,2-dihydrospiro[indole-3,3'-thietane] 1',1'-Dioxide, 38. To a microwave vial were added sodium tert-butoxide ($0.017 \mathrm{~g}, 0.177 \mathrm{mmol}$), Ruphos ($4.12 \mathrm{mg}, 8.83 \mu \mathrm{~mol}$), 4-chloro-7-fluoro-3-methyl-2-(pyridin-2yl)quinoline, $23 \mathrm{~d}(0.025 \mathrm{~g}, 0.093 \mathrm{mmol})$, 6-(4-morpholinyl)-1,2-dihydrospiro[indole-3, 3^{\prime}-thietane] $1^{\prime}, 1^{\prime}$-dioxide, 34 ($0.026 \mathrm{~g}, 0.088$ $\mathrm{mmol})$, and XPhos precatalyst $(6.5 \mathrm{mg}, 8.8 \mu \mathrm{~mol})$ in toluene $(0.6 \mathrm{~mL})$. The suspension was deoxygenated with argon for 5 min and then stirred at $100{ }^{\circ} \mathrm{C}$ for 1 h under microwave irradiation. Purification by column chromatography (eluting with a gradient of $0-10 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a yellow solid, which was repurified by reverse phase HPLC (10-60\% acetonitrile in water) to give 1-(7-fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-6-(4-morpholinyl)-1,2-dihydrospiro-[indole-3, 3^{\prime}-thietane] $1^{\prime}, 1^{\prime}$-dioxide, $38(0.012 \mathrm{~g}, 26 \%)$, as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta \mathrm{ppm} 8.71(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 7.99-$ $8.05(1 \mathrm{H}, \mathrm{m}), 7.83-7.94(3 \mathrm{H}, \mathrm{m}), 7.50-7.56(2 \mathrm{H}, \mathrm{m}), 7.49(1 \mathrm{H}, \mathrm{d}, J=$ $8.3 \mathrm{~Hz}), 6.40(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}), 5.58(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 4.72$ $(1 \mathrm{H}, \mathrm{dd}, J=13.6,2.3 \mathrm{~Hz}), 4.55-4.63(3 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz})$, $4.25(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 3.58(4 \mathrm{H}, \mathrm{t}, J=4.9 \mathrm{~Hz}), 2.82-2.93(4 \mathrm{H}, \mathrm{m})$, $2.24(3 \mathrm{H}, \mathrm{s})$. HRMS (ESI): $m / z 531.1868[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FN}_{4} \mathrm{O}_{3} \mathrm{~S}\right.$ requires 531.1867).

1'-(7-Fluoro-3-methyl-2-(pyridin-2-yl)quinolin-4-yl)-2,2-dimethyl-6'-morpholinospiro[[1,3]dioxane-5,3'-indoline], 39. To a microwave vial were added sodium tert-butoxide ($0.035 \mathrm{~g}, 0.37 \mathrm{mmol}$), Ruphos ($8.6 \mathrm{mg}, 0.018 \mathrm{mmol}$), 4-chloro-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 23d ($0.053 \mathrm{~g}, 0.19 \mathrm{mmol}$), 2,2-dimethyl-6'-morpholinospiro[$[1,3]$ dioxane- $5,3^{\prime}$-indoline $], 37(0.056 \mathrm{~g}, 0.18 \mathrm{mmol})$, and XPhos precatalyst $(0.014 \mathrm{~g}, 0.018 \mathrm{mmol})$ in toluene $(1.2 \mathrm{~mL})$. The suspension was deoxygenated with argon for 5 min and stirred at $100^{\circ} \mathrm{C}$ for 90 min under microwave irradiation. Purification by column chromatography (eluting with a gradient of $10-60 \%$ ethyl acetate in hexane) gave 1^{\prime}-($7-$ fluoro-3-methyl-2-(pyridin-2-yl) quinolin-4-yl)-2,2-dimethyl-6'-morpholinospiro[[1,3]dioxane-5, 3^{\prime}-indoline], 39 ($0.057 \mathrm{~g}, 57 \%$), as a yellow solid. Mass spectrum (ESI): $m / e=541.3[\mathrm{M}+\mathrm{H}]^{+}$.
(1-(7-Fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-6-(4-morpho-linyl)-2,3-dihydro-1H-indole-3,3-diyl)dimethanol, 40. To a solution of 1'-(7-fluoro-3-methyl-2-(pyridin-2-yl)quinolin-4-yl)-2,2-dimethyl-6'-morpholinospiro[[1,3]dioxane-5,3'-indoline], 39 (0.057 g, 0.105 $\mathrm{mmol})$, in THF $(1 \mathrm{~mL})$ was added $1.0 \mathrm{~N} \mathrm{HCl}(1.05 \mathrm{~mL}, 1.05 \mathrm{mmol})$.

After stirring at room temperature for 1 h , the solution was purified by column chromatography (eluting with a gradient of $0-10 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give (1-(7-fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-6-(4-morpholinyl)-2,3-dihydro-1H-indole-3,3-diyl)dimethanol, 40 (0.027 g, $0.054 \mathrm{mmol}, 51 \%$), as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta \operatorname{ppm} 8.72(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 8.03(1 \mathrm{H}, \mathrm{td}, J=7.7,1.7 \mathrm{~Hz}), 7.97(1 \mathrm{H}$, dd, $J=9.3,6.1 \mathrm{~Hz}) 7.92(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.84(1 \mathrm{H}, \mathrm{dd}, J=10.1$, $2.6 \mathrm{~Hz}), 7.47-7.57(2 \mathrm{H}, \mathrm{m}), 7.06(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{dd}, J=$ $8.2,2.1 \mathrm{~Hz}), 5.45(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz}), 4.84(1 \mathrm{H}$, $\mathrm{t}, J=5.3 \mathrm{~Hz}), 3.79-3.91(2 \mathrm{H}, \mathrm{m}), 3.72(2 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}), 3.65(2 \mathrm{H}$, dd, $J=5.4,1.2 \mathrm{~Hz}), 3.58(4 \mathrm{H}, \mathrm{t}, J=4.9 \mathrm{~Hz}), 2.76-2.89(4 \mathrm{H}, \mathrm{m}), 2.29$ ($\mathrm{s}, 3 \mathrm{H}$). HRMS (ESI): $m / z 501.2294[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{FN}_{4} \mathrm{O}_{3}\right.$ requires 501.2303).

3,3-Dimethyl-6-(pyridin-4-yl)indoline, 41. A solution of 6-iodo-3,3dimethylindoline, $6(100 \mathrm{mg}, 0.36 \mathrm{mmol})$, 4-pyridinylboronic acid $(54 \mathrm{mg}, 0.44 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(78 \mathrm{mg}, 0.73 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(42 \mathrm{mg}$, $0.037 \mathrm{mmol})$ in acetonitrile $(2 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$ was heated in a microwave reactor for 2 h at $110^{\circ} \mathrm{C}$. After this time the reaction mixture was partitioned between ethyl acetate and water. The separated organic layer was dried over MgSO_{4}, filtered and evaporated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:ethyl acetate, $1: 0$ to $\left.1: 1\right)$ gave 3,3-dimethyl-6-(pyridin-4-yl)indoline, 41 ($26 \mathrm{mg}, 32 \%$ yield). Mass spectrum (ESI): $m / e=225.2[\mathrm{M}+\mathrm{H}]^{+}$.

4-(3,3-dimethyl-6-(pyridin-4-yl)indolin-1-yl)-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 44a. 44a was prepared according to general procedure B using 3,3-dimethyl-6-(pyridin-4-yl)indoline, 41 (0.026 g , 0.116 mmol), 4-chloro-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, $23 \mathrm{~d}(0.032 \mathrm{~g}, 0.116 \mathrm{mmol})$, cesium carbonate $(0.076 \mathrm{~g}, 0.232 \mathrm{mmol})$, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.011 \mathrm{~g}, 0.012 \mathrm{mmol})$ and (\pm) BINAP ($0.011 \mathrm{~g}, 0.017$ mmol) in toluene (3 mL). After purification by HPLC, 4-(3,3-dimethyl-6-(pyridin-4-yl)indolin-1-yl)-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 44a ($4.4 \mathrm{mg}, 8 \%$ yield), was obtained. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{MeOD}): \delta \mathrm{ppm} 8.75(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}), 8.68(2 \mathrm{H}, \mathrm{m}), 8.12-8.23(3 \mathrm{H}$, m), $8.07(1 \mathrm{H}, \mathrm{dd}, J=9.4,5.9 \mathrm{~Hz}), 7.96(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.83(1 \mathrm{H}$, $\mathrm{dd}, J=9.8,2.7 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{dd}, J=7.6,4.9 \mathrm{~Hz}), 7.50(2 \mathrm{H}, \mathrm{m}), 7.42$ $(1 \mathrm{H}, \mathrm{m}), 6.62(1 \mathrm{H}, \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz})$, $2.28(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{s})$. HRMS (ESI): $m / z 461.2156$ $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{FN}_{4}\right.$ requires 461.2143).

General Procedure D. A glass microwave reaction vessel was charged with the indoline (1 equiv) and chloroquinoline (1 equiv) fragments, followed by N -methyl-2-pyrrolidone and a 4.0 M solution of HCl in 1,4dioxane (1 equiv). The resulting mixture was heated at $130^{\circ} \mathrm{C}$ for 12 h . After this time the reaction mixture was partitioned between ethyl acetate and NaHCO_{3} (saturated aqueous solution). The separated organic layer was dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by column chromatography on silica gave the desired coupling products.

7-Fluoro-4-(6-iodo-3,3-dimethylindolin-1-yl)-3-methyl-2-(pyridin-2-yl)quinoline, 42.42 was prepared according to general procedure D using 4-chloro-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 23d (499 mg, 1.83 mmol), 6-iodo-3,3-dimethylindoline, $6(500 \mathrm{mg}, 1.831 \mathrm{mmol})$, and 4 M HCl in 1,4-dioxane $(0.458 \mathrm{~mL}, 1.83 \mathrm{mmol})$ in N -methyl-2pyrrolidinone $(3 \mathrm{~mL})$. After purification $\left(40 \mathrm{~g}\right.$ of SiO_{2}, eluting with a gradient of 0% to 30% ethyl acetate in hexane), 7 -fluoro-4-(6-iodo-3,3-dimethylindolin-1-yl)-3-methyl-2-(pyridin-2-yl)quinoline, 42 (510 mg , 55% yield), was obtained as a yellow foam. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta \mathrm{ppm} 8.71-8.80(1 \mathrm{H}, \mathrm{m}), 7.85-7.97(3 \mathrm{H}, \mathrm{m}), 7.80(1 \mathrm{H}, \mathrm{dd}, J=9.2$, $5.9 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{ddd}, J=7.0,4.8,1.7 \mathrm{~Hz}), 7.28-7.33(1 \mathrm{H}, \mathrm{m}), 7.09(1 \mathrm{H}$, $\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.29(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz})$, $3.70-3.84(2 \mathrm{H}, \mathrm{m}), 2.37(3 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s}), 1.47(3 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=510.0[\mathrm{M}+\mathrm{H}]^{+}$.

General Procedure E. A stirred solution of the haloquinoline (1 equiv) in 1,4-dioxane (0.1 M) was treated with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}$ (0.1 equiv), $\operatorname{bis}($ pinacolato) diboron (1.1 equiv), and KOAc (1.5 equiv). The mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h in a microwave reactor. After this time the reaction mixture was diluted with ethyl acetate and water. The separated organic layer was washed with brine, dried over MgSO_{4}, filtered and evaporated in vacuo to give the boronic acids (or esters).

4-(3,3-Dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-indolin-1-yl)-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 43. 43 was
prepared according to procedure E using 7-fluoro-4-(6-iodo-3,3-dimethylindolin-1-yl)-3-methyl-2-(pyridin-2-yl)quinoline, 42 (180 mg , $0.353 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(11.8 \mathrm{mg}, 0.018 \mathrm{mmol})$, bis(pinacolato)diboron ($99 \mathrm{mg}, 0.389 \mathrm{mmol}$) and potassium acetate $(52 \mathrm{mg}, 0.530$ $\mathrm{mmol})$ in 1,4-dioxane $(5.2 \mathrm{~mL}, 61.1 \mathrm{mmol})$. After purification $\left(\mathrm{SiO}_{2}\right.$, hexane:ethyl acetate, 1:0 to 1:1), 4-(3,3-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indolin-1-yl)-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 43 ($75 \mathrm{mg}, 42 \%$), was obtained as a colorless film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 8.75(1 \mathrm{H}, \mathrm{dt}, J=4.9,1.4 \mathrm{~Hz}), 7.79-$ $7.97(4 \mathrm{H}, \mathrm{m}), 7.38-7.44(1 \mathrm{H}, \mathrm{m}), 7.29-7.33(1 \mathrm{H}, \mathrm{m}), 7.21-7.26$ $(2 \mathrm{H}, \mathrm{m}), 6.42(1 \mathrm{H}, \mathrm{s}), 3.80(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz})$, $2.32-2.40(3 \mathrm{H}, \mathrm{m}), 1.51-1.57(3 \mathrm{H}, \mathrm{m}), 1.43-1.50(3 \mathrm{H}, \mathrm{m}), 1.22-1.30$ $(12 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $m / e=510[\mathrm{M}+\mathrm{H}]^{+}$.

General Procedure F. A stirred solution of the boronic acid (or ester) (1 equiv) in 1,4-dioxane $(0.1 \mathrm{M})$ was treated with $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (0.1 equiv), an aryl chloride (1 equiv) and sodium carbonate (2 equiv). The mixture was heated at $120^{\circ} \mathrm{C}$ for 2 h in a microwave reactor. After this time the reaction mixture was diluted with ethyl acetate and water. The separated organic layer was washed with brine and then dried over MgSO_{4}, filtered and evaporated in vacuo. Purification by reverse phase HPLC (10 to 60% acetonitrile in water) gave the substituted quinoline products.

4-(1-(7-Fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-3,3-dimeth-yl-2,3-dihydro-1H-indol-6-yl)-2-pyrimidinamine, 44b. 44b was prepared according to procedure F using 4-(3,3-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indolin-1-yl)-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, $43(75 \mathrm{mg}, 0.147 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(10.3 \mathrm{mg}, 0.015 \mathrm{mmol})$, 2-amine-4-chloropyrimidine ($21.0 \mathrm{mg}, 0.162 \mathrm{mmol}$) and sodium carbonate $(26.5 \mathrm{mg}, 0.442 \mathrm{mmol})$ in 1,4-dioxane $(2.0 \mathrm{~mL})$ and water $(0.7 \mathrm{~mL})$ and heating in a microwave reactor. After purification, 4-(1-(7-fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-3,3-dimethyl-2,3-dihydro-1H-indol-6-yl)-2pyrimidinamine, 44 b ($18 \mathrm{mg}, 26 \%$), was obtained as a yellow film. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.66-8.83(1 \mathrm{H}, \mathrm{m}), 8.17(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz})$, $7.79-7.99(4 \mathrm{H}, \mathrm{m}), 7.36-7.48(2 \mathrm{H}, \mathrm{m}), 7.26-7.29(2 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{d}$, $J=5.5 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 5.43(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.82(2 \mathrm{H}, \mathrm{s}), 2.29-$ $2.44(3 \mathrm{H}, \mathrm{m}), 1.58(3 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s})$. HRMS (ESI): m/z 477.2198 $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{FN}_{6}\right.$ requires 477.2204).

4-(1-(7-Fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-3,3-dimethyl-2,3-dihydro-1H-indol-6-yl)-6-methyl-2-pyrimidinamine, 44c. 44c was prepared according to procedure F using 4-(3,3-dimethyl-6-(4,4, 5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indolin-1-yl)-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, $43(70 \mathrm{mg}, 0.14 \mathrm{mmol})$, 4-chloro-6-methyl-pyrimidin-2-amine $(21.7 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(9.6 \mathrm{mg}, 0.014$ $\mathrm{mmol})$, and sodium carbonate $(43.7 \mathrm{mg}, 0.41 \mathrm{mmol})$ in 1,4-dioxane $(3.1 \mathrm{~mL})$ and water $(0.79 \mathrm{~mL})$, and heating in a microwave reactor. After purification, 4-(1-(7-fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-3,3-dimethyl-2,3-dihydro-1H-indol-6-yl)-6-methyl-2-pyrimidinamine, 44c $(28 \mathrm{mg}, 42 \%)$ was obtained as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.75(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}), 7.76-7.96(4 \mathrm{H}, \mathrm{m}), 7.34-7.46$ $(2 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.21-7.26(1 \mathrm{H}, \mathrm{m}), 6.66-6.76(1 \mathrm{H}, \mathrm{m}), 6.58$ $(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 5.19(2 \mathrm{H}, \mathrm{br}$ s), $3.74-3.90(2 \mathrm{H}, \mathrm{m}), 2.35-2.41(3 \mathrm{H}$, m), 2.28-2.35 ($3 \mathrm{H}, \mathrm{m}$), 1.55-1.61 ($3 \mathrm{H}, \mathrm{m}$), $1.49-1.55(3 \mathrm{H}, \mathrm{m})$. HRMS (ESI): $m / z 491.2353[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{FN}_{6}\right.$ requires 491.2361).

Dimethyl 2-(5-bromo-3-nitropyridin-2-yl)malonate, 46. To a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(44 \mathrm{~g}, 316 \mathrm{mmol})$ in dimethylformamide $(105 \mathrm{~mL}$, $105 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ was added dimethyl malonate ($18 \mathrm{~mL}, 158 \mathrm{mmol}$) via syringe over 10 min . After this time 5-bromo-2-chloro-3-nitropyridine, $45(25 \mathrm{~g}, 105 \mathrm{mmol})$, was added portionwise over 4 min . The reaction mixture was allowed to warm to room temperature overnight. After this time the reaction mixture was poured into $2.0 \mathrm{M} \mathrm{HCl}(300 \mathrm{~mL})$ and diluted with ethyl acetate $(500 \mathrm{~mL})$. The separated organic layer was washed with $\mathrm{LiCl}(1.0 \mathrm{M}$ aqueous solution, 100 mL$)$ and brine $(100 \mathrm{~mL})$, and then it was dried over MgSO_{4}, filtered and evaporated in vacuo to give dimethyl 2-(5-bromo-3-nitropyridin-2-yl)malonate, 46 ($34 \mathrm{~g}, 97 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.88(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 8.63(1 \mathrm{H}$, d, $J=2.2 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{s}), 3.83(6 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=$ $333.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $335.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

Methyl 2-(5-Bromo-3-nitropyridin-2-yl)acetate, 47. A stirred solution of dimethyl 2-(5-bromo-3-nitropyridin-2-yl)malonate, 46 (34 g, $102 \mathrm{mmol})$, in DMSO $(400 \mathrm{~mL})$, $\mathrm{LiCl}(8.7 \mathrm{~g}, 204 \mathrm{mmol})$ and water
$(2.0 \mathrm{~mL}, 112 \mathrm{mmol})$ was heated at $150^{\circ} \mathrm{C}$ for 12 h . After this time the reaction mixture was cooled to room temperature and diluted with ethyl acetate $(700 \mathrm{~mL})$ and 1.0 M aqueous $\mathrm{HCl}(200 \mathrm{~mL})$. The separated organic layer was washed with $\mathrm{LiCl}(150 \mathrm{~mL}, 1.0 \mathrm{M}$ aqueous solution), dried over MgSO_{4}, filtered and evaporated in vacuo until a volume of 100 mL . The mixture was left standing for 12 h , filtered and evaporated in vacuo to give methyl 2-(5-bromo-3-nitropyridin-2-yl)acetate, 47 $(21 \mathrm{~g}, 75 \%$ yield $)$, as a dark oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.86$ $(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 8.58(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 4.30(2 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=275\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $277[(\mathrm{M}+\mathrm{H})$ $\left.\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

Methyl 2-(5-Bromo-3-nitropyridin-2-yl)-2-methylpropanoate, 48. To a stirred solution of methyl 2-(5-bromo-3-nitropyridin-2-yl)acetate, $47(10.7 \mathrm{~g}, 38.9 \mathrm{mmol})$, in dimethylformamide $(120 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(1.87 \mathrm{~g}, 46.7 \mathrm{mmol}, 60 \%$ dispersion in oil) portionwise over 10 min . The reaction mixture was stirred under N_{2} and allowed to warm to room temperature for 20 min . After this time the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and iodomethane $(2.92 \mathrm{~mL}, 46.7 \mathrm{mmol})$ was added via syringe over 10 min . The reaction mixture was allowed to warm to room temperature and stirred under N_{2} for 18 h . After this time an additional portion of $\mathrm{NaH}(1.87 \mathrm{~g}, 46.7 \mathrm{mmol}, 60 \%$ dispersion in oil) followed by iodomethane ($2.92 \mathrm{~mL}, 46.7 \mathrm{mmol}$) was slowly added and the reaction mixture was stirred at room temperature for 4 h . After this time the reaction mixture was cooled to room temperature and diluted with ethyl acetate $(300 \mathrm{~mL})$. The organic layer was washed with NaHCO_{3} $(100 \mathrm{~mL})$ and $\mathrm{LiCl}(2 \times 60 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. The residual mineral oil from the NaH dispersion was removed by pipet and by a wash with hexane, affording methyl 2-(5-bromo-3-nitropyridin-2-yl)-2-methylpropanoate, 48 ($10.35 \mathrm{~g}, 88 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta \mathrm{ppm} 8.84(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 8.38(1 \mathrm{H}, \mathrm{d}$, $J=2.2 \mathrm{~Hz}), 3.66(3 \mathrm{H}, \mathrm{s}), 1.68-1.75(6 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $\mathrm{m} /$ $e=303\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $305\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

6-Bromo-3,3-dimethyl-1H-pyrrolo[3,2-b]pyridin-2(3H)-one, 49. To a stirred solution of methyl 2-(5-bromo-3-nitropyridin-2-yl)-2methylpropanoate, $48(2.94 \mathrm{~g}, 9.7 \mathrm{mmol})$, in acetic acid $(55.4 \mathrm{~mL})$ was added iron (powder, $<10 \mu \mathrm{~m}, 2.71 \mathrm{~g}, 48.5 \mathrm{mmol}$). The gray reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 45 min . After this time the reaction mixture was cooled to room temperature and filtered over Celite. The Celite was washed with acetic acid, and the filtrates were concentrated, affording a crude residue, which was purified by column chromatography on silica gel $(80 \mathrm{~g})$, eluting with a gradient of 0% to 50% ethyl acetate in hexane to provide 6-bromo-3,3-dimethyl-1 H -pyrrolo [3,2-b]-pyridin-2 $(3 \mathrm{H})$-one, $49(1.94 \mathrm{~g}, 83 \%$ yield $)$, as a white powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 8.42(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.30(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$, $7.37(1 \mathrm{H}, \mathrm{s}), 1.46(6 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=241.0[(\mathrm{M}+\mathrm{H})$ $\left.\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $243.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

6-Bromo-3,3-dimethyl-2,3-dihydro-1H-pyrrolo[3,2-b]pyridine, 50. To a stirred suspension of 6-bromo-3,3-dimethyl-1H-pyrrolo[3,2-b]-pyridin-2 $(3 H)$-one, $49(300 \mathrm{mg}, 1.24 \mathrm{mmol})$, in toluene $(3 \mathrm{~mL})$ was added Red-Al ($1.1 \mathrm{~mL}, 3.73 \mathrm{mmol}, 65 \%$ in toluene) dropwise over 2 min . The reaction mixture was stirred at room temperature for 1 h and then cooled to $0^{\circ} \mathrm{C}$, diluted with ethyl acetate $(80 \mathrm{~mL})$ and treated with 1 N aqueous $\mathrm{NaOH}(30 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The separated organic layer was washed with $1 \mathrm{~N} \mathrm{NaOH}(30 \mathrm{~mL})$ and then dried over MgSO_{4}, filtered and evaporated in vacuo to give 6-bromo-3,3-dimethyl-2,3-dihydro- 1 H -pyrrolo $[3,2-b]$ pyridine, $50\left(240 \mathrm{mg}, 85 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \operatorname{ppm} 7.91(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{d}, J=1.8$ $\mathrm{Hz}), 3.42(2 \mathrm{H}, \mathrm{s}), 1.34(6 \mathrm{H}, \mathrm{s})$. Mass spectrum (ESI): $m / e=227.0$ $\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $229.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

Diethyl 2-(5-Bromo-3-nitropyridin-2-yl)malonate, 51. To a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(2223 \mathrm{~g}, 16.11 \mathrm{~mol}, 3$ equiv) in dimethylformamide (5.4 L) was added diethyl malonate ($1223 \mathrm{~mL}, 8.055 \mathrm{~mol}, 1.5$ equiv) over a period of 15 min in an ice bath, followed by addition of 5-bromo-2-chloro-3-nitropyridine, $45(1275 \mathrm{~g}, 5.37 \mathrm{~mol})$, portionwise over a period of 15 min . The resulting mixture was allowed to slowly warm to room temperature and stirred overnight. The mixture was poured into 2 N aqueous $\mathrm{HCl}(15 \mathrm{~L})$ and diluted with ethyl acetate (22 L). The organic layer was separated, washed with 1 M aqueous $\mathrm{LiCl}(2 \times 5 \mathrm{~L})$ and brine $(5 \mathrm{~L})$, dried over MgSO_{4} and concentrated. Most of the residual dimethylformamide and diethyl malonate in the residue were
removed by distillation under high vacuum to give 2022 g of crude diethyl 2-(5-bromo-3-nitropyridin-2-yl)malonate, 51. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.88(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 8.63(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz})$, $5.45(1 \mathrm{H}, \mathrm{s}), 4.30(4 \mathrm{H}, \mathrm{m}), 1.25(6 \mathrm{H}, \mathrm{m})$. Mass spectrum $(\mathrm{ESI}): m / e=$ $361.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $363.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

Ethyl 2-(5-Bromo-3-nitropyridin-2-yl)acetate, 52. To a stirred solution of diethyl 2-(5-bromo-3-nitropyridin-2-yl)malonate, 51 ($2012 \mathrm{~g}, 5.57 \mathrm{~mol}$), in DMSO (12 L) were added $\mathrm{LiCl}(1184 \mathrm{~g}$, 27.86 mol) and water ($120 \mathrm{~mL}, 6.684 \mathrm{~mol}$), and the resulting mixture was heated at $150{ }^{\circ} \mathrm{C}$ overnight. After the reaction reached completion (monitored by LC-MS), the mixture was cooled to room temperature, poured into brine $(10 \mathrm{~L})$ and extracted with ethyl acetate $(17 \mathrm{~L})$. The suspension was filtered to remove insoluble material, and the phases were separated. The aqueous phase was further extracted with ethyl acetate $(14 \mathrm{~L})$, and the organic extracts were combined, washed with brine $(3 \times 5 \mathrm{~L})$, dried over MgSO_{4} and concentrated to give 1490 g of crude 52 . The crude was purified by column chromatography (eluting with hexane/ethyl acetate $=30: 1$ to $10: 1$) to afford ethyl 2-(5-bromo-3-nitropyridin-2-yl)acetate, 52 (1200 g, 76\% yield from 51). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.86(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 8.58(1 \mathrm{H}, \mathrm{d}, J=$ $2.0 \mathrm{~Hz}), 4.30(2 \mathrm{H}, \mathrm{s}), 4.20(2 \mathrm{H}, \mathrm{m}), 1.25(3 \mathrm{H}, \mathrm{m})$.

Ethyl 2-(3-Amino-5-bromopyridin-2-yl)acetate, 53. To a solution of ethyl 2-(5-bromo-3-nitropyridin-2-yl)acetate, 52 ($101 \mathrm{~g}, 0.349 \mathrm{~mol}$), in degassed THF (400 mL) was added wet Raney-Ni $(25 \mathrm{~g})$, and the mixture was place under a H_{2} atmosphere in a Parr shaker. When the hydrogen pressure was stable at 30 psi , the reaction mixture was checked by LC-MS, which showed that some hydroxylamine intermediate remained unreduced. An additional 11 g of wet Raney-Ni was added, and hydrogenation of the mixture was continued on a Parr shaker at 30 psi with monitoring of the reaction by LC-MS. On completion, the mixture was filtered through a pad of Celite, the pad was washed with methanol and the filtrate was concentrated to give ethyl 2-(3-amino-5-bromopyridin-2-yl) acetate, 53 ($85 \mathrm{~g}, 96 \%$ yield), which was used for the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$: $\delta \mathrm{ppm} 7.76(1 \mathrm{H}, \mathrm{s}, J=2.4 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{s}, J=2.4 \mathrm{~Hz}), 5.05(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.07(2 \mathrm{H}, \mathrm{m}), 3.66(2 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $m / e=$ $259.2\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $261.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

6-Bromo-1H-pyrrolo[3,2-b]pyridin-2(3H)-one, 54. To a suspension of ethyl 2-(3-amino-5-bromopyridin-2-yl)acetate, 53 ($925 \mathrm{~g}, 3.57 \mathrm{~mol}$), in toluene $(9.25 \mathrm{~L})$ was added acetic acid $(740 \mathrm{~mL}, 12.92 \mathrm{~mol})$, and the resulting mixture was heated to reflux for 4 h . The mixture was cooled to room temperature, and the solvents were removed under reduced pressure. The resulting residue was suspended in toluene (2 L), filtered, washed with diethyl ether $(\times 2)$ and dried to give 6 -bromo- 1 H -pyrrolo-[3,2-b]pyridin-2(3H)-one, $54\left(706 \mathrm{~g}, 93 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}): δ ppm $10.70(1 \mathrm{H}, \mathrm{s}), 8.17(1 \mathrm{H}, \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{s}), 3.57(2 \mathrm{H}$, s). Mass spectrum (ESI): $m / e=213.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and 215.1 $\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

6'-Bromo-2,3,5,6-tetrahydrospiro[pyran-4,3'-pyrrolo[3,2-b]-pyridin]-2'(1'H)-one, 55. To an ice-cold suspension of NaH (351 g , 60% in mineral oil, 8.78 mol) in anhydrous THF (7 L) was added 6-bromo-1H-pyrrolo[3,2-b]pyridin-2 $3 H$)-one, 54 ($706 \mathrm{~g}, 3.31 \mathrm{~mol}$), portionwise under nitrogen over a period of 30 min . The resulting mixture was stirred at room temperature for 30 min . Bis(2-chloroethyl) ether (582 mL , $4.965 \mathrm{~mol})$ was added over a period of 15 min , followed by $\mathrm{NaI}(49.65 \mathrm{~g}$, $0.331 \mathrm{~mol})$. The resulting mixture was heated to $60^{\circ} \mathrm{C}$ and stirred overnight. The mixture was cooled to $0^{\circ} \mathrm{C}$, and acetic acid $(24 \mathrm{~mL})$ was added. The mixture was then poured into ice-water $(6 \mathrm{~L})$ with vigorous stirring and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~L})$, and the combined organic extracts were washed with brine $(3 \times 5 \mathrm{~L})$, dried over MgSO_{4}, and concentrated in vacuo. The resulting residue was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(350 \mathrm{~mL})$, filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 150 \mathrm{~mL})$ and dried to give 6^{\prime}-bromo-2,3,5,6tetrahydrospiro [pyran-4,3'-pyrrolo[3,2-b]pyridin]-2'(1'H)-one, 55 (136 g, 14% yield) as an orange solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 10.83$ $(1 \mathrm{H}, \mathrm{s}), 8.25(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.41(1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 3.94-4.07(2 \mathrm{H}, \mathrm{m})$, 3.87-3.92 $(2 \mathrm{H}, \mathrm{m}), 1.76-1.85(2 \mathrm{H}, \mathrm{m}), 1.63-1.69(2 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $m / e=282.9\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $285.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

6'-Bromo-1',2,2',3,5,6-hexahydrospiro[pyran-4,3'-pyrrolo[3,2-b]pyridine], 56. To an ice-cold suspension of 6^{\prime}-bromo-2,3,5,6-tetrahydrospiro[pyran-4, 3^{\prime}-pyrrolo[3,2-b]pyridin]-2'(1'H)-one, 55
($136 \mathrm{~g}, 0.48 \mathrm{~mol}$), in anhydrous toluene $(950 \mathrm{~mL})$ was added Red-Al ($440 \mathrm{~mL}, 1.44 \mathrm{~mol}, 65 \%$ in toluene) under nitrogen over a period of 25 min . The resulting mixture was stirred at room temperature, and the reaction was monitored by $\mathrm{LC}-\mathrm{MS}$. After 1.5 h , the mixture was cooled using an ice bath and 2 N aqueous $\mathrm{NaOH}(600 \mathrm{~mL})$ was carefully and slowly added to quench the reaction. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 800 \mathrm{~mL})$, and the combined organic extracts were washed with brine $(2 \times 500 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo to give 112 g of crude 56 , which was triturated with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$. The solid was filtered, washed with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and dried to give 78 g of compound 56 as an off-white solid. The mother liquor was concentrated and triturated with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ again, and the solid was filtered, washed with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$ and dried to give an additional 7.8 g of compound 56. The mother liquor was purified by column chromatography (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol $=$ $100: 1)$ to afford another 5.6 g of compound 56. All the fractions were combined to give 6^{\prime}-bromo- $1^{\prime}, 2,2^{\prime}, 3,5,6$-hexahydrospiro[pyran-4,3'-pyrrolo[3,2-b]pyridine], 56 ($91.4 \mathrm{~g}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta \mathrm{ppm} 7.70(1 \mathrm{H}, \mathrm{s}), 6.89(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.17(1 \mathrm{H}, J=$ $2.4 \mathrm{~Hz}), 3.84-3.91(2 \mathrm{H}, \mathrm{m}), 3.42-3.50(4 \mathrm{H}, \mathrm{m}), 1.79-1.88(2 \mathrm{H}, \mathrm{m})$, $1.48-1.52(2 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $m / e=269.1[(\mathrm{M}+\mathrm{H})$ $\left.\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $271.2\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

4-(6-Bromo-3,3-dimethyl-2,3-dihydro-1H-pyrrolo[3,2-b]pyridin-1-yl)-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 57. 57 was prepared according to procedure D using 6-bromo-3,3-dimethyl-2,3-dihydro-1 H -pyrrolo[3,2-b] pyridine, $50(108 \mathrm{mg}, 0.48 \mathrm{mmol})$, 4-chloro-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 23d ($130 \mathrm{mg}, 0.48 \mathrm{mmol}$), and 4.0 M solution of HCl in 1,4-dioxane ($0.12 \mathrm{~mL}, 0.48 \mathrm{mmol}$) in N-methyl-2pyrrolidone $(0.5 \mathrm{~mL})$ and heating at $150^{\circ} \mathrm{C}$ for 3 h in the microwave. After purification $\left(\mathrm{SiO}_{2}\right.$, hexane:ethyl acetate, $1: 0$ to 1:3), 4-(6-bromo-3,3-dimethyl-2,3-dihydro-1H-pyrrolo[3,2-b]pyridin-1-yl)-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 57 ($100 \mathrm{mg}, 45 \%$ yield), was obtained as a yellow film. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.69-8.75(1 \mathrm{H}, \mathrm{m})$, $7.94(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 7.87-7.92(2 \mathrm{H}, \mathrm{m}), 7.81-7.86(1 \mathrm{H}, \mathrm{m}), 7.75$ $(1 \mathrm{H}, \mathrm{dd}, J=9.2,5.9 \mathrm{~Hz}), 7.37-7.41(1 \mathrm{H}, \mathrm{m}), 7.29-7.35(1 \mathrm{H}, \mathrm{m}), 6.32$ $(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 3.76-3.90(2 \mathrm{H}, \mathrm{m}), 2.37(3 \mathrm{H}, \mathrm{s}), 1.58(3 \mathrm{H}, \mathrm{s}), 1.52$ $(3 \mathrm{H}, \mathrm{s})$. Mass spectrum $(\mathrm{ESI}): m / e=463\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and 465 $\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.

4-(3,3-Dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-pyrrolo[3,2-b]pyridin-1-yl)-7-fluoro-3-methyl-2-(2-pyridinyl)quinoline, 58. To a stirred solution of 4-(6-bromo-3,3-dimethyl-2,3-dihydro-1H-pyrrolo-[3,2-b] pyridin-1-yl)-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 57 $(75 \mathrm{mg}, 0.162 \mathrm{mmol})$, in toluene $(6 \mathrm{~mL})$ were added $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.8 \mathrm{mg}$, $0.016 \mathrm{mmol})$, XPhos $(15.4 \mathrm{mg}, 0.032 \mathrm{mmol})$, sodium tert-butoxide $(31.1 \mathrm{mg}, 0.324 \mathrm{mmol})$ and morpholine $(16.9 \mu \mathrm{~L}, 0.194 \mathrm{mmol})$. The reaction mixture was heated to $120^{\circ} \mathrm{C}$ for 3 h . After this time the reaction mixture was cooled to room temperature and evaporated under reduced pressure. The residue was dissolved in methanol (2.0 mL) and filtered using a 13 mm syringe filter. Purification by reverse phase HPLC (20 to 80\% acetonitrile in water) gave 4-(3,3-dimethyl-6-(4-morpholinyl)-2,3-dihydro-1H-pyrrolo[3,2-b]pyridin-1-yl)-7-fluoro-3-methyl-2-(2-pyridinyl)quinoline, 58 ($35 \mathrm{mg}, 46 \%$ yield), as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.70-8.77(1 \mathrm{H}, \mathrm{m}), 7.75-$ $7.96(4 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{ddd}, J=7.1,5.0$, $1.6 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{ddd}, J=9.1,8.1,2.7 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz})$, $3.82(2 \mathrm{H}, \mathrm{s}), 3.69-3.77(4 \mathrm{H}, \mathrm{m}), 2.91-3.06(4 \mathrm{H}, \mathrm{m}), 2.38(3 \mathrm{H}, \mathrm{s})$, 1.57-1.64 (3 H, m), 1.50-1.56 (3 H, m). HRMS (ESI): $m / z 470.2355$ $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{FN}_{5} \mathrm{O}\right.$ requires 470.2357).

4-(1-(7-Fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-3,3-dimethyl-2,3-dihydro-1H-pyrrolo[3,2-b]pyridin-6-yl)-2-pyrimidinamine, 59. First step: Preparation was according to procedure E using 4-(6-bromo-3,3-dimethyl-2,3-dihydro-1H-pyrrolo [3,2-b]pyridin-1-yl)-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, $57(100 \mathrm{mg}, 0.22 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}$ $(14.4 \mathrm{mg}, 0.022 \mathrm{mmol})$, bis(pinacolato)diboron $(60 \mathrm{mg}, 0.24 \mathrm{mmol})$ and potassium acetate ($35 \mathrm{mg}, 0.32 \mathrm{mmol}$) in 1,4-dioxane $(4.0 \mathrm{~mL})$ and heating at $120^{\circ} \mathrm{C}$ in the microwave for 1 h . After aqueous workup, 1-(7-fluoro-3-methyl-2-(pyridin-2-yl)quinolin-4-yl)-3,3-dimethyl-2,3-dihy-dro- 1 H -pyrrolo[3,2-b]pyridin-6-ylboronic acid ($92 \mathrm{mg}, 100 \%$ yield) was obtained as a colorless film. Mass spectrum (ESI): $m / e=429[\mathrm{M}+\mathrm{H}]^{+}$. Product used without further purification in the next step.

Second step: Preparation was according to procedure F using 1-(7-fluoro-3-methyl-2-(pyridin-2-yl)quinolin-4-yl)-3,3-dimethyl-2,3-dihy-dro- 1 H -pyrrolo $[3,2-b]$ pyridin-6-ylboronic acid ($92 \mathrm{mg}, 0.215 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(15.12 \mathrm{mg}, 0.021 \mathrm{mmol})$, 2-amine-4-chloropyrimidine $(30.6 \mathrm{mg}, 0.236 \mathrm{mmol})$ and sodium carbonate $(68.3 \mathrm{mg}, 0.644 \mathrm{mmol})$ in 1,4-dioxane $(2.5 \mathrm{~mL})$ and water $(0.5 \mathrm{~mL})$ and heating in the microwave for 1 h at $120^{\circ} \mathrm{C}$. After purification, 4-(1-(7-fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-3,3-dimethyl-2,3-dihydro-1H-pyrrolo[3,2-b] pyridin-6-yl)-2pyrimidinamine, 59 ($38 \mathrm{mg}, 37 \%$ yield), was obtained as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.68-8.80(1 \mathrm{H}, \mathrm{m}), 8.49(1 \mathrm{H}, \mathrm{d}, J=$ $2.0 \mathrm{~Hz}), 8.26(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 7.72-7.99(4 \mathrm{H}, \mathrm{m}), 7.41(1 \mathrm{H}, \mathrm{ddd}, J=$ $7.0,5.1,2.0 \mathrm{~Hz}), 7.29-7.34(1 \mathrm{H}, \mathrm{m}), 6.93(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 6.77-$ $6.86(1 \mathrm{H}, \mathrm{m}), 5.16(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.77-3.95(2 \mathrm{H}, \mathrm{m}), 2.27-2.44(3 \mathrm{H}, \mathrm{m})$, 1.61-1.68 (3 H, m), 1.51-1.60 (3 H, m). HRMS (ESI): $m / z 478.2154$ $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{FN}_{7}\right.$ requires 478.2157).
tert-Butyl 6'-Bromo-2,3,5,6-tetrahydrospiro[pyran-4,3'-pyrrolo-[3,2-b]pyridine]-1' $\left.\mathbf{2}^{\prime} H\right)$-carboxylate, 60 . To a stirred solution of 6^{\prime} -bromo-1' $2,2^{\prime}$,3,5,6-hexahydrospiro[pyran-4, 3^{\prime}-pyrrolo[3,2-b]pyridine], $56(10.0 \mathrm{~g}, 37.2 \mathrm{mmol})$, in THF $(100 \mathrm{~mL})$ were added $\mathrm{Boc}_{2} \mathrm{O}(9.73 \mathrm{~g}$, $44.6 \mathrm{mmol})$, triethylamine $(7.77 \mathrm{~mL}, 55.7 \mathrm{mmol})$ and DMAP $(0.908 \mathrm{~g}$, 7.43 mmol), and the reaction mixture was stirred at room temperature for 24 h . After this time an additional portion of $\mathrm{Boc}_{2} \mathrm{O}(2.0 \mathrm{~g}, 9.17 \mathrm{mmol})$ and DMAP ($0.3 \mathrm{~g}, 2.46 \mathrm{mmol}$) was added and the reaction mixture was stirred at room temperature for an additional 24 h . After this time the reaction mixture was partitioned between ethyl acetate $(300 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The separated organic layer was washed with brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, filtered and evaporated in vacuo. Column chromatography (hexane:ethyl acetate, 1:0 to 1:2) gave tert-butyl 6^{\prime}-bromo-2,3,5,6-tetrahydrospiro[pyran-4,3'-pyrrolo[3,2-b]pyridine]$1^{\prime}\left(2^{\prime} H\right)$-carboxylate, $60\left(12.12 \mathrm{~g}, 88 \%\right.$ yield), as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.06-8.33(2 \mathrm{H}, \mathrm{m}), 4.03-4.13(2 \mathrm{H}, \mathrm{m})$, $3.90(2 \mathrm{H}, \mathrm{br}$ s), $3.58(2 \mathrm{H}, \mathrm{td}, J=11.7,2.2 \mathrm{~Hz}), 2.11-2.23(2 \mathrm{H}, \mathrm{m}), 1.60$ $(11 \mathrm{H}, \mathrm{br} s)$. Mass spectrum $(\mathrm{ESI}): m / e=369.0\left[(\mathrm{M}+\mathrm{H})\left({ }^{79} \mathrm{Br}\right)\right]^{+}$and $371.2\left[(\mathrm{M}+\mathrm{H})\left({ }^{81} \mathrm{Br}\right)\right]^{+}$.
tert-Butyl 6'-morpholino-2,3,5,6-tetrahydrospiro[pyran-4,3'-pyrrolo[3,2-b]pyridine]-1' (2'H)-carboxylate, 61. To a stirred solution of tert-butyl 6^{\prime}-bromo-2,3,5,6-tetrahydrospiro[pyran-4,3'-pyrrolo[3,2-b]-pyridine]- $1^{\prime}\left(2^{\prime} H\right)$-carboxylate, $60(16.2 \mathrm{~g}, 43.9 \mathrm{mmol})$, in toluene $(300 \mathrm{~mL})$ were added morpholine ($3.82 \mathrm{~mL}, 43.9 \mathrm{mmol}$), sodium tert-butoxide $(8.43 \mathrm{~g}, 88 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}(2.0 \mathrm{~g}, 2.19 \mathrm{mmol})$ and 2-(dicyclohexylphosphino) $-2^{\prime}, 4^{\prime}, 6^{\prime}$,-triisopropylbiphenyl $(2.09 \mathrm{~g}, 4.39 \mathrm{mmol})$, and the reaction mixture was heated at reflux for 90 min . After this time the reaction mixture was cooled to room temperature and evaporated in vacuo. The residue was partitioned between ethyl acetate $(400 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$. The separated organic layer was dried over MgSO_{4}, filtered and evaporated in vacuo. Column chromatography (hexane:ethyl acetate, 1:0 to 1:1) gave tert-butyl 6^{\prime}-morpholino-2,3,5,6-tetrahydrospiro[pyran-4,3'-pyrrolo[3,2-b] pyridine]-1 ${ }^{\prime}\left(2^{\prime} H\right)$-carboxylate, 61 (11.2 g, 68% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 7.73-7.83(2 \mathrm{H}, \mathrm{m}), 4.01-4.13(2 \mathrm{H}$, m), $3.86(6 \mathrm{H}, \mathrm{br}$ s), $3.58(2 \mathrm{H}, \mathrm{td}, J=11.6,2.3 \mathrm{~Hz}), 3.18(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.10-$ $2.23(2 \mathrm{H}, \mathrm{m}), 1.47-1.67(11 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $m / e=376.2$ $[\mathrm{M}+\mathrm{H}]^{+}$.

6'-Morpholino-1',2,2',3,5,6-hexahydrospiro[pyran-4,3'-pyrrolo-[3,2-b]pyridine], 62. To a stirred solution of tert-butyl 6'-morpholino-2,3,5,6-tetrahydrospiro[pyran-4,3'-pyrrolo[3,2-b]pyridine]-1 $1^{\prime}\left(2^{\prime} H\right)$ carboxylate, $61(11 \mathrm{~g}, 29.3 \mathrm{mmol})$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added trifluoroacetic acid $(67.7 \mathrm{~mL}, 879 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 3 h . After this time the reaction mixture was evaporated in vacuo and partitioned between ethyl acetate $(60 \mathrm{~mL})$ and 1.0 M aqueous $\mathrm{HCl}(200 \mathrm{~mL})$. The separated aqueous layer was washed with ethyl acetate $(50 \mathrm{~mL})$. The separated aqueous layer was then basified to pH 14 with aqueous NaOH and extracted with ethyl acetate $(2 \times 200 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and evaporated in vacuo to give 6^{\prime}-morpholino- $1^{\prime}, 2,2^{\prime}, 3,5,6$-hexahydrospiro[pyran-4,3'-pyrrolo[3,2-b]pyridine], $62(6.8 \mathrm{~g}, 84 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}$ $7.60-7.62(1 \mathrm{H}, \mathrm{m}), 6.38-6.50(1 \mathrm{H}, \mathrm{m}), 4.07(2 \mathrm{H}, \mathrm{dt}, J=11.8,4.3 \mathrm{~Hz})$, 3.82-3.87 (4 H, m), 3.53-3.61 (4 H, m), 3.09-3.14 (4 H, m), 2.09$2.18(2 \mathrm{H}, \mathrm{m}), 1.60-1.64(2 \mathrm{H}, \mathrm{m})$. Mass spectrum (ESI): $m / e=276.2$ $[\mathrm{M}+\mathrm{H}]^{+}$.

1'-(7-Fluoro-3-methyl-2-(2-pyridinyl)-4-quinolinyl)-6'-(4-morpho-linyl)-1',2,2',3,5,6-hexahydrospiro[pyran-4,3'-pyrrolo[3,2-b]pyridine], 63. To a stirred solution of 6^{\prime}-morpholino- $1^{\prime}, 2,2^{\prime}, 3,5,6-$ hexahydrospiro[pyran-4,3'-pyrrolo[3,2-b]pyridine], 62 (5.55 g, 20.17 mmol), and 4-chloro-7-fluoro-3-methyl-2-(pyridin-2-yl)quinoline, 23d $(5.5 \mathrm{~g}, 20.17 \mathrm{mmol})$, in toluene $(400 \mathrm{~mL})$ were added Xphos-precatalyst $(1.49 \mathrm{~g}, 2.02 \mathrm{mmol})$ and sodium tert-butoxide $(3.88 \mathrm{~g}, 40.3 \mathrm{mmol})$, and the reaction mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 3 h . After this time the reaction mixture was cooled to room temperature and evaporated in vacuo. The residue was dissolved in ethyl acetate $(700 \mathrm{~mL})$ and washed with citric acid $(2 \times 100 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{NaOH}(2 \times 100 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered and evaporated in vacuo. The resulting residue was purified by column chromatography (330 g of SiO_{2}, gradient: $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:methanol: $\mathrm{NH}_{4} \mathrm{OH}(9: 1: 0.4)$ from $1: 0$ to $8: 2$). The fractions containing pure product were combined and evaporated in vacuo. The resulting yellow solid was taken up in ethanol $(60 \mathrm{~mL})$ and evaporated in vacuo. The product was then dried under vacuum $(150 \mathrm{mmHg})$ while heating at $130^{\circ} \mathrm{C}$ for 72 h to give 1'-(7-fluoro-3-methyl-2-(pyridin-2-yl)quinolin-4-yl)-6'-morpholino$1^{\prime}, 2,2^{\prime}, 3,5,6$-hexahydrospiro[pyran-4,3'-pyrrolo[3,2-b] pyridine], 63 ($4.2 \mathrm{~g}, 41 \%$ yield), as a yellow powder. Purity by $\operatorname{HPLC}(\lambda=230$ $\mathrm{nm}): 99.6 \%$. Residual solvent by GC/MS: 0.3% ethanol. Water by KF: $1.2 \% \mathrm{w} / \mathrm{w} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 8.75(1 \mathrm{H}, \mathrm{dd}, J=3.3$, $1.0 \mathrm{~Hz}), 7.83-7.97(3 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{dd}, J=9.2,6.1 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}$, $J=2.3 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{ddd}, J=7.0,5.1,2.0 \mathrm{~Hz}), 7.28-7.34(1 \mathrm{H}, \mathrm{m})$, $5.83(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 4.09-4.23(2 \mathrm{H}, \mathrm{m}), 3.95-4.04(2 \mathrm{H}, \mathrm{m})$, $3.71-3.80(4 \mathrm{H}, \mathrm{m}), 3.52-3.62(2 \mathrm{H}, \mathrm{m}), 3.01(4 \mathrm{H}, \mathrm{q}, J=4.4 \mathrm{~Hz})$, $2.32-2.46(5 \mathrm{H}, \mathrm{m}), 1.74-1.91(2 \mathrm{H}, \mathrm{m})$. HRMS (ESI): $m / z 512.2461$ $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{FN}_{5} \mathrm{O}_{2}\right.$ requires 512.2463).

- ASSOCIATED CONTENT

(5) Supporting Information

(i) In vitro biological assays, (ii) in vivo study protocols, (iii) determination of cocrystal structures of 24 f and $\mathbf{6 3}$ with PI3K γ; (iv) enzyme selectivity data for compound 63. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel: 650-244-2356. E-mail: felgonza@amgen.com.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Jin Tang and Peter Yakowec for expression and purification of the PI3K γ enzyme; Craig Uyeda and Stacy Fide for in vivo PK studies; Jianxia Shi and Jamie Wong for bioanalysis; Dhanashri Bagal for high resolution mass spectrometry data; Ron Kelly and Maren Willcockson for formulation studies with 63; Robert Wahl and Tisha San Miguel for developing the PI3K enzyme assays; and Paul Dransfield and Jonathan Houze for helpful discussions related to this study.

ABBREVIATIONS USED

BINAP, 2,2'-bis(diphenylphosphino)-1, 1^{\prime}-binaphthyl; Boc, tertbutoxycarbonyl; CIA, collagen induced arthritis; Cl, clearance; CYP3A4, cytochrome P450 3A4; CYP2D6, cytochrome P450 2D6; DCM, dichloromethane; DMF, N,N-dimethylformamide; DMSO, dimethylsulfoxide; IgG, immunoglobulin G; ELISA, enzyme-linked immunosorbent assay; IgM, immunoglobulin M; HLM, human liver microsomes; hPXR, human pregnane x receptor; KLH, keyhole limpet hemocyanin; PBS, phosphate buffer solution; PI3K, phosphoinositide 3-kinases; PK, pharmacokinetic; PPA, polyphosphoric acid; Red-Al, sodium bis(2-methoxyethoxy)aluminumhydride; qd, once a day; RLM,
rat liver microsomes; RuPhos, 2-dicyclohexylphosphino-2', 6^{\prime} diisopropoxybiphenyl; SEM, standard error of the mean; $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$, nucleophilic aromatic substitution; SAR, structure-activity relationship; XPhos, 2-dicyclohexylphosphino- $2^{\prime}, 4^{\prime}, 6^{\prime}$-triisopropylbiphenyl; XPhos precatalyst, chloro(2-dicyclohexylphosphi-no-2', $4^{\prime}, 6^{\prime}$-triisopropyl-1,1'-biphenyl) [2-(2-aminoethyl)phenyl)]Pd(II) methyl tert-butyl ether

REFERENCES

(1) (a) Hennessy, B. T.; Smith, D. L.; Ram, P. T.; Lu, Y.; Mills, G. B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature 2005, 4, 988. (b) Crabbe, T.; Welham, M. J.; Ward, S. G. The PI3K inhibitor arsenal: choose your weapon! Trends Biochem. Sci. 2007, 32, 450 and references therein. (c) Garcia-Echeverria, C.; Sellers, W. R. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 2008, 27, 5511. (d) Maira, S-M; Finan, P., Garcia-Echeverria, C. From the Bench to the Bed Side: PI3K Pathway Inhibitors in Clinical Development. Phosphoinositide 3-kinase in Health and Disease, Vol. 2. In Current Topics in Microbiology and Immunology; Rommel, C., Vanhaesebroeck, B., Vogt, P. K., Eds.; Springer-Verlag: Berlin, Heidelberg, 2011; Vol. 347, pp 209-239. (e) Wu, P.; Hu, Y. Small molecules targeting phosphoinositide 3-kinases. MedChemComm 2012, DOI: 10.1039/C2MD20044A.
(2) Hirsch, E.; Ciraolo, E.; Ghigo, A.; Costa, C. Taming the PI3K team to hold inflammation and cancer at bay. Pharmacol. Ther. 2008, 118, 192.
(3) Jimenez, C.; Hernandez, C.; Pimentel, B.; Carrera, A. C. The p85 regulatory subunit controls sequential activation of phosphoinositide 3kinase by Tyr kinases and Ras. J. Biol. Chem. 2002, 277, 41556.
(4) Brock, C.; Schaefer, M.; Reusch, H. P.; Czupalla, C.; Michalke, M.; Spicher, K.; Schultz, G.; Nurnberg, B. Roles of G beta gamma in membrane recruitment and activation of p110 gamma/p101 phosphoinositide 3-kinase gamma. J. Cell. Biol. 2003, 160, 89.
(5) (a) Zhao, L.; Vogt, P. K. Class I PI3K in oncogenic cellular transformation. Oncogene 2008, 27, 5486. (b) Jia, S.; Liu, Z.; Zhang, S.; Liu, P.; Zhang, L.; Hyun Lee, S.; Zhang, J.; Signoretti, S.; Loda, M.; Roberts, T. M.; Zhao, J. J. Essential roles of $\mathrm{PI}(3) \mathrm{K}-\mathrm{p} 110$ in cell growth, metabolism and tumorigenesis. Nature 2008, 454, 776-779.
(6) (a) Rommel, C; Camps, M.; Ji, H. PI3K δ and PI3K γ : partners in crime in inflammation in rheumatoid arthritis and beyond? Nature 2007, 7, 191. (b) Randis, T. M.; Puri, K. D.; Zhou, H.; Diacovo, T. G. Eur. J. Imтипol. 2008, 38, 1215-1224. (c) Ameriks, M. K.; Venable, J. D. Small Molecule Inhibitors of Phosphoinositide 3-Kinase (PI3K) δ and γ. Curr. Top. Med. Chem. 2009, 9, 738-753. (d) Williams, O.; Houseman, B. T.; Kunkel, E. J.; Aizenstein, B.; Hoffman, R.; Knight, Z. A.; Shokat, K. M. Discovery of dual inhibitors of the immune cell PI3Ks p110delta and p110gamma: a prototype for new anti-inflammatory drugs. Chem. Biol. 2010, 17, 123.
(7) Furman, D. A.; Rommel, C. PI3K δ Inhibitors in Cancer: Rationale and Serendipity Merge in the Clinic. Cancer Discovery 2011, 1, 562-572 and references therein.
(8) All CLL patients treated with CAL-101 showed lymph node shrinkage. In approximately 25% of patients this was a durable response and patients remained on study for many cycles of treatment.
(9) Herman, S. E. M.; Gordon, A. L.; Wagner, A. J.; Heerema, N. A.; Zhao, W.; Flynn, J. M.; Jones, J.; Andritsos, L.; Puri, K. D.; Lannutti, B. J.; Giese, N. A.; Zhang, X.; Wei, L.; Byrd, J. C.; Johnson, A. J. Phosphatidylinositol 3-kinase- δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 2010, 116, 20782088.
(10) (a) D'Angelo, N. D.; Kim, T.-S.; Andrews, K.; Booker, S. K.; Caenepeel, S.; Chen, K.; D’Amico, D.; Freeman, D.; Jiang, J.; Liu, L.; McCarter, J. D.; San Miguel, T.; Mullady, E. L.; Schrag, M.; Subramanian, R.; Tang, J.; Wahl, R. C.; Wang, L.; Whittington, D. A.; Wu, T.; Xi, N.; Xu, Y.; Yakowec, P.; Yang, K.; Zalameda, L. P.; Zhang, N.; Hughes, P.; Norman, M. H. Discovery and Optimization of a Series of Benzothiazole Phosphoinositide 3-Kinase (PI3K)/Mammalian Target
of Rapamycin (mTOR) Dual Inhibitors. J. Med. Chem. 2011, 54, 17891811. (b) Nishimura, N.; Siegmund, A.; Liu, L.; Yang, K.; Bryan, M. C.; Andrews, K. L.; Bo, Y.; Booker, S. K.; Caenepeel, S.; Freeman, D.; Liao, H.; McCarter, J.; Mullady, E. L.; San Miguel, T.; Subramanian, R.; Tamayo, N.; Wang, L.; Whittington, D. A.; Zalameda, L.; Zhang, N.; Hughes, P. E.; Norman, M. H. Phospshoinositide 3-kinase (PI3K)/ mammalian target of rapamycin (mTOR) dual inhibitors: discovery and structure-activity relationships of a series of quinoline and quinoxaline derivatives. J. Med. Chem. 2011, 54, 4735-4751. (c) Stec, M. M.; Andrews, K. L.; Booker, S. K.; Caenepeel, S.; Freeman, D. J.; Jiang, J.; Liao, H.; McCarter, J.; Mulladi, E. L.; San Miguel, T.; Subramanian, R.; Tamayo, N.; Wang, L.; Yang, K.; Zalameda, L. P.; Zhang, N.; Hugues, P.; Norman, M. H. Structure-Activity Relationships of Phosphoinositide 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Dual Inhibitors: Investigations of Various 6,5-Heterocycles to Improve Metabolic Stability. J. Med. Chem. 2011, 54, 5174-5184.
(11) Chen, Y.; Cushing, T. D.; Duquette, J. A.; Gonzalez-Lopez de Turiso, Felix; Hao, X.; He, X.; Lucas, B.; McGee, L. R.; Reichelt, A.; Rzasa, R. M.; Seganish, J.; Shin, Y.; Zhang, D. Heterocyclic compounds and their use as inhibitors of PI3K activity. WO2008/118468A1
(12) Brown, M.; Chen, Y.; Cushing, T. D.; Gonzalez-Lopez de Turiso, F.; He, X.; Kohn, T. J.; Lohman, J. W.; Pattaropong, V.; Seganish, J.; Shin, Y.; Simard, J. L. Heterocyclic compounds and their uses.WO2010/ 151737 A2.
(13) (a) The discovery and in vivo evaluation of $\mathrm{PI} 3 \mathrm{~K} \beta$ inhibitors for the treatment of PTEN-deficient cancers has been recently reported in the literature. See: Certal, V.; Halley, F.; Virone-Oddos, A.; Delorme, C.; Karlsson, A.; Rak, A.; Thompson, F.; Filoche-Rommé, B.; El-Ahmad, Y.; Carry, J.-C.; Abecassis, P.-Y.; Lejeune, P.; Vincent, L.; Bonnevaux, H.; Nicolas, J.-P.; Bertrand, T.; Marquette, J.-P.; Michot, N.; Benard, T.; Below, P.; Vade, I.; Chatreaux, F.; Lebourg, G.; Pilorge, F.; AngouillantBoniface, O.; Louboutin, A.; Lengauer, C.; Schio, L. Discovery and Optimization of New Benzimidazole- and Benzoxazole-Pyrimidone Selective PI3K β Inhibitors for the Treatment of Phosphatase and TENsin homologue (PTEN)-Deficient Cancers. J. Med. Chem. 2012, 55 (10), 4788-4805. (b) AZD-6482 and TGX-155 are PI3K β inhibitors which have been tested for the treatments of thrombosis.
(14) Chen, G.; Cushing, T. D.; Fisher, B.; He, X.; Li, K.; Li, Z.; McGee, L. R.; Pattaropong, V.; Faulder, P.; Seganish, J.; Shin. Y. Alkynyl alcohols as kinase inhibitors. WO2009/158011A1.
(15) Unpublished results.
(16) See Supporting Information for assay details.
(17) This assay was used to quantify the on-target $\mathrm{PI} 3 \mathrm{~K} \delta$ cellular potency of our inhibitors. See Supporting Information for assay details.
(18) RLM/HLM stands for rat liver microsomes and human liver microsomes. \% TO stands for percentage turn over (the percentage of compound that is consumed after incubation at a $1 \mu \mathrm{M}$ concentration of the test article with RLM or HLM during a period of 30 min at $37^{\circ} \mathrm{C}$). Sol. (PBS) refers to solubility in phosphate buffer solution ($\mathrm{pH}=7.4$).
(19) Chimeric mice lacking both $\mathrm{PI} 3 \mathrm{~K} \beta$ and $\mathrm{PI} 3 \mathrm{~K} \delta$ activity exhibited almost complete protection from RA in a K/BxN model of disease. See: Kulkarni, S.; Sitaru, C.; Jakus, Z.; Anderson, K. E.; Damoulakis, G.; Davidson, K.; Hirose, M.; Juss, J.; Oxley, D.; Chessa, T. A. M.; Ramadani, F.; Guillou, H.; Segonds-Pichon, A.; Fritsch, A.; Jarvis, G. E.; Okkenhaug, K.; Ludwig, R.; Zillikens, D.; Mocsai, A.; Vanhaesebroeck, B.; Stephens, L. R.; Hawkins, P. T. PI3K β Plays a Critical Role in Neutrophil Activation by Immune Complexes. Sci. Signaling 2011, 4, ra23.
(20) King, A.; Larsen, R.; Li, Tj; Lu, Y. Improved method for the preparation of 1-acetyl-6-amino-3,3-dimethyl-2,3-dihydroindole using Fischer indole cyclization as key step. WO2010/71828 A2.
(21) Akai, S.; Tsujino, T.; Akiyama, E.; Tanimoto, K.; Naka, T.; Kita, Y. Enantiodivergent Preparation of Optically Active Oxindoles Having a Stereogenic Quaternary Carbon Center at the C3 Position via the Lipase-Catalyzed Desymmetrization Protocol: Effective Use of 2Furoates for Either Enzymatic Esterification or Hydrolysis. J. Org. Chem. 2004, 69, 2478.
(22) PXR refers to Pregnane X Receptor. This nuclear receptor detects the presence of toxic substances in an organism and up regulates the
expression of proteins involved in the clearance of these foreign substances. POC stands for percentage of control. For a review see: Kliewer, S.; Goodwin, B.; Willson, T. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr. Rev. 2002, 23, 687702.
(23) $\log D(\mathrm{pH}=7.4)$ for analogue 24d: 4.5; $\log D(\mathrm{pH}=7.4)$ for analogue 63: 2.6.
(24) Akt phosphorylation inhibition of the S473 residue in MDA-MB468 cells was measured. See Supporting Information for assay details.
(25) $\mathrm{PI} 3 \mathrm{~K} \gamma$ was used as a structural surrogate for PI3K δ.
(26) To rationalize the superior PI3K β inhibitory activity of 63 relative to other propeller shape PI3K inhibitors (i.e., CAL-101), docking studies of these two compounds in a homology model of $\mathrm{PI} 3 \mathrm{~K} \beta$ were performed. These studies showed that, when inhibitor 63 and CAL-101 bind to $\operatorname{PI} 3 \mathrm{~K} \beta$, the position occupied by the quinoline is different from the position occupied by the quinazolinone ring. Specifically, the quinoline in $\mathbf{6 3}$ is shifted further away from the loop at the bottom of the mouth region in the ribose pocket relative to the quinazolinone ring in CAL-101. This difference allows the 2-pyridyl ring in 63 to avoid the unfavorable steric interaction of this substituent with the amino acid residues in the bottom of the mouth region of $\mathrm{PI} 3 \mathrm{~K} \beta$ (Glu886 and Asp890), which would explain the improved PI3K β potency of 63 relative to CAL-101.

(27) A similar observation has been made by Williams and co-workers, see: Berndt, A.; Miller, S.; Williams, O.; Le, D. D.; Houseman, B. T.; Pacold, J. I.; Gorrec, F.; Hon, W.-C.; Ren, P.; Liu, Y.; Rommel, C.; Gaillard, P.; Rückle, T.; Schwarz, M. K.; Shokat, K. M.; Shaw, J. P.; Williams, R. L. The p110 delta structure: mechanisms for selectivity and potency of new $\mathrm{PI}(3) \mathrm{K}$ inhibitors. Nat. Chem. Biol. 2010, 6, 117-124.
(28) See Supporting Information for detailed kinase selectivity data.
(29) Sanguinetti, M. C.; Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature 2006, 440, 463-469.
(30) Gore, E. R.; Gower, J.; Kurali, E.; Sui, J. L.; Bynum, J.; Ennulat, D.; Herzyk, D. J. Primary antibody response to keyhole limpet hemocyanin in rat as a model for immunotoxicity evaluation. Toxicology 2004, 197, 23-35 (see Supporting Information for a detailed description of this study).
(31) Inhibitor 63 was dosed in 5\% EtOH, 20\% PEG400, 25\% PG, $12.5 \% \mathrm{HP}$ and 37.5% water.
(32) Duris, F. H.; Fava, R. A.; Noelle, R. J. Collagen-Induced Arthritis as a Model of Rheumatoid Arthritis. Clin. Immunol. Immиnopathol. 1994, 73, 11-18.
(33) A second collagen injection was administered at day 6 in all the animals.
(34) Inhibitor 63 was dosed in 2\% HPMC, 10\% Captisol, 1\% Pluronic F and 87% water.
(35) Measures of the tibiotarsal (ankle) joint were taken using calipers. See Supporting Information for a detailed description of this study.
(36) Methotrexate (MTX), $0.075 \mathrm{mg} / \mathrm{kg}$, dosed as a 1% carboxymethyl cellulose aqueous solution, was used as a positive control.
(37) Analogue 63 had a free fraction of 6.8% in rat plasma.

[^0]: Received: May 15, 2012
 Published: August 9, 2012

